These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 35715748)

  • 1. Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation.
    Lasri A; Shahrezaei V; Sturrock M
    BMC Bioinformatics; 2022 Jun; 23(1):236. PubMed ID: 35715748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data.
    McCalla SG; Fotuhi Siahpirani A; Li J; Pyne S; Stone M; Periyasamy V; Shin J; Roy S
    G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36626328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods.
    Dai C; Jiang Y; Yin C; Su R; Zeng X; Zou Q; Nakai K; Wei L
    Nucleic Acids Res; 2022 May; 50(9):4877-4899. PubMed ID: 35524568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scBoolSeq: Linking scRNA-seq statistics and Boolean dynamics.
    Magaña-López G; Calzone L; Zinovyev A; Paulevé L
    PLoS Comput Biol; 2024 Jul; 20(7):e1011620. PubMed ID: 38976751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data.
    Qi Y; Guo Y; Jiao H; Shang X
    BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline.
    Knight CH; Khan F; Patel A; Gill US; Okosun J; Wang J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking Algorithms for Gene Set Scoring of Single-cell ATAC-seq Data.
    Wang X; Lian Q; Dong H; Xu S; Su Y; Wu X
    Genomics Proteomics Bioinformatics; 2024 Jul; 22(2):. PubMed ID: 39049508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Regulatory Network Inference Using Convolutional Neural Networks from scRNA-seq Data.
    Mao G; Pang Z; Zuo K; Liu J
    J Comput Biol; 2023 May; 30(5):619-631. PubMed ID: 36877552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling capture efficiency of single-cell RNA-sequencing data improves inference of transcriptome-wide burst kinetics.
    Tang W; Jørgensen ACS; Marguerat S; Thomas P; Shahrezaei V
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37354494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of single-cell network using mutual information for scRNA-seq data analysis.
    Chang LY; Hao TY; Wang WJ; Lin CY
    BMC Bioinformatics; 2024 Sep; 25(Suppl 2):292. PubMed ID: 39237886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic evaluation of single-cell RNA-sequencing imputation methods.
    Hou W; Ji Z; Ji H; Hicks SC
    Genome Biol; 2020 Aug; 21(1):218. PubMed ID: 32854757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate and interpretable gene expression imputation on scRNA-seq data using IGSimpute.
    Xu K; Cheong C; Veldsman WP; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37039664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data.
    Xu J; Zhang A; Liu F; Zhang X
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37004161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks.
    Mao G; Pang Z; Zuo K; Wang Q; Pei X; Chen X; Liu J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis.
    Si T; Hopkins Z; Yanev J; Hou J; Gong H
    PLoS One; 2023; 18(11):e0292792. PubMed ID: 37948433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MuDCoD: multi-subject community detection in personalized dynamic gene networks from single-cell RNA sequencing.
    Şapcı AOB; Lu S; Yan S; Ay F; Tastan O; Keleş S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37740957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows.
    You Y; Tian L; Su S; Dong X; Jabbari JS; Hickey PF; Ritchie ME
    Genome Biol; 2021 Dec; 22(1):339. PubMed ID: 34906205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.