These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
545 related articles for article (PubMed ID: 35715748)
21. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data. Shi Y; Wan J; Zhang X; Yin Y Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858 [TBL] [Abstract][Full Text] [Related]
22. BANMF-S: a blockwise accelerated non-negative matrix factorization framework with structural network constraints for single cell imputation. Zhao J; Ching WK; Wong CW; Cheng X Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39242194 [TBL] [Abstract][Full Text] [Related]
23. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data. Chen S; Yan X; Zheng R; Li M Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258 [TBL] [Abstract][Full Text] [Related]
24. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions. Shojaee A; Huang SC Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702 [TBL] [Abstract][Full Text] [Related]
25. Correlation Imputation for Single-Cell RNA-seq. Gan L; Vinci G; Allen GI J Comput Biol; 2022 May; 29(5):465-482. PubMed ID: 35325552 [No Abstract] [Full Text] [Related]
26. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
27. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Holland CH; Tanevski J; Perales-Patón J; Gleixner J; Kumar MP; Mereu E; Joughin BA; Stegle O; Lauffenburger DA; Heyn H; Szalai B; Saez-Rodriguez J Genome Biol; 2020 Feb; 21(1):36. PubMed ID: 32051003 [TBL] [Abstract][Full Text] [Related]
29. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis. Zhu M; Lai Y J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729 [TBL] [Abstract][Full Text] [Related]
35. scRNMF: An imputation method for single-cell RNA-seq data by robust and non-negative matrix factorization. Qian Y; Zou Q; Zhao M; Liu Y; Guo F; Ding Y PLoS Comput Biol; 2024 Aug; 20(8):e1012339. PubMed ID: 39116191 [TBL] [Abstract][Full Text] [Related]
36. Supervised application of internal validation measures to benchmark dimensionality reduction methods in scRNA-seq data. Koch FC; Sutton GJ; Voineagu I; Vafaee F Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34374742 [TBL] [Abstract][Full Text] [Related]
37. Single-cell RNA-seq data analysis based on directed graph neural network. Feng X; Zhang H; Lin H; Long H Methods; 2023 Mar; 211():48-60. PubMed ID: 36804214 [TBL] [Abstract][Full Text] [Related]
38. Advancing single-cell RNA-seq data analysis through the fusion of multi-layer perceptron and graph neural network. Feng X; Xiu YH; Long HX; Wang ZT; Bilal A; Yang LM Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38171931 [TBL] [Abstract][Full Text] [Related]
39. GMFGRN: a matrix factorization and graph neural network approach for gene regulatory network inference. Li S; Liu Y; Shen LC; Yan H; Song J; Yu DJ Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38261340 [TBL] [Abstract][Full Text] [Related]
40. Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments. Tian L; Dong X; Freytag S; Lê Cao KA; Su S; JalalAbadi A; Amann-Zalcenstein D; Weber TS; Seidi A; Jabbari JS; Naik SH; Ritchie ME Nat Methods; 2019 Jun; 16(6):479-487. PubMed ID: 31133762 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]