These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35715799)
1. Depth image conversion model based on CycleGAN for growing tomato truss identification. Jung DH; Kim CY; Lee TS; Park SH Plant Methods; 2022 Jun; 18(1):83. PubMed ID: 35715799 [TBL] [Abstract][Full Text] [Related]
2. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Liang X; Chen L; Nguyen D; Zhou Z; Gu X; Yang M; Wang J; Jiang S Phys Med Biol; 2019 Jun; 64(12):125002. PubMed ID: 31108465 [TBL] [Abstract][Full Text] [Related]
3. Multi-Contrast MRI Image Synthesis Using Switchable Cycle-Consistent Generative Adversarial Networks. Zhang H; Li H; Dillman JR; Parikh NA; He L Diagnostics (Basel); 2022 Mar; 12(4):. PubMed ID: 35453864 [TBL] [Abstract][Full Text] [Related]
4. Deep learning approach for detecting tomato flowers and buds in greenhouses on 3P2R gantry robot. Singh R; Khan A; Seneviratne L; Hussain I Sci Rep; 2024 Sep; 14(1):20552. PubMed ID: 39232065 [TBL] [Abstract][Full Text] [Related]
5. Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis. Yan C; Lin J; Li H; Xu J; Zhang T; Chen H; Woodruff HC; Wu G; Zhang S; Xu Y; Lambin P Korean J Radiol; 2021 Jun; 22(6):983-993. PubMed ID: 33739634 [TBL] [Abstract][Full Text] [Related]
6. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sandfort V; Yan K; Pickhardt PJ; Summers RM Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403 [TBL] [Abstract][Full Text] [Related]
7. CycleGAN-based deep learning technique for artifact reduction in fundus photography. Yoo TK; Choi JY; Kim HK Graefes Arch Clin Exp Ophthalmol; 2020 Aug; 258(8):1631-1637. PubMed ID: 32361805 [TBL] [Abstract][Full Text] [Related]
8. Normalization of HE-stained histological images using cycle consistent generative adversarial networks. Runz M; Rusche D; Schmidt S; Weihrauch MR; Hesser J; Weis CA Diagn Pathol; 2021 Aug; 16(1):71. PubMed ID: 34362386 [TBL] [Abstract][Full Text] [Related]
9. IE-CycleGAN: improved cycle consistent adversarial network for unpaired PET image enhancement. Cui J; Luo Y; Chen D; Shi K; Su X; Liu H Eur J Nucl Med Mol Imaging; 2024 Nov; 51(13):3874-3887. PubMed ID: 39042332 [TBL] [Abstract][Full Text] [Related]
10. Imaging Study of Pseudo-CT Synthesized From Cone-Beam CT Based on 3D CycleGAN in Radiotherapy. Sun H; Fan R; Li C; Lu Z; Xie K; Ni X; Yang J Front Oncol; 2021; 11():603844. PubMed ID: 33777746 [TBL] [Abstract][Full Text] [Related]
11. Improvement of megavoltage computed tomography image quality for adaptive helical tomotherapy using cycleGAN-based image synthesis with small datasets. Lee D; Jeong SW; Kim SJ; Cho H; Park W; Han Y Med Phys; 2021 Oct; 48(10):5593-5610. PubMed ID: 34418109 [TBL] [Abstract][Full Text] [Related]
13. Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images. Cronin NJ; Finni T; Seynnes O Comput Methods Programs Biomed; 2020 Nov; 196():105583. PubMed ID: 32544777 [TBL] [Abstract][Full Text] [Related]
14. Generating Rare Surgical Events Using CycleGAN: Addressing Lack of Data for Artificial Intelligence Event Recognition. Mohamadipanah H; Kearse L; Wise B; Backhus L; Pugh C J Surg Res; 2023 Mar; 283():594-605. PubMed ID: 36442259 [TBL] [Abstract][Full Text] [Related]
15. Structure-Aware Motion Deblurring Using Multi-Adversarial Optimized CycleGAN. Wen Y; Chen J; Sheng B; Chen Z; Li P; Tan P; Lee TY IEEE Trans Image Process; 2021; 30():6142-6155. PubMed ID: 34214036 [TBL] [Abstract][Full Text] [Related]
16. CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation. Liu J; Yan H; Cheng H; Liu J; Sun P; Wang B; Mao R; Du C; Luo S Quant Imaging Med Surg; 2021 Dec; 11(12):4820-4834. PubMed ID: 34888192 [TBL] [Abstract][Full Text] [Related]
17. Online recognition and yield estimation of tomato in plant factory based on YOLOv3. Wang X; Vladislav Z; Viktor O; Wu Z; Zhao M Sci Rep; 2022 May; 12(1):8686. PubMed ID: 35606537 [TBL] [Abstract][Full Text] [Related]
18. Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks. Yoo TK; Ryu IH; Kim JK; Lee IS; Kim JS; Kim HK; Choi JY Comput Methods Programs Biomed; 2020 Dec; 197():105761. PubMed ID: 32961385 [TBL] [Abstract][Full Text] [Related]
19. Study on the detection of water status of tomato ( Zuo Z; Mu J; Li W; Bu Q; Mao H; Zhang X; Han L; Ni J Front Plant Sci; 2023; 14():1094142. PubMed ID: 37324706 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of pseudo-CT images from pelvic MRI images based on an MD-CycleGAN model for radiotherapy. Sun H; Xi Q; Fan R; Sun J; Xie K; Ni X; Yang J Phys Med Biol; 2022 Jan; 67(3):. PubMed ID: 34879356 [No Abstract] [Full Text] [Related] [Next] [New Search]