These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 35715994)

  • 61. Micro- and nanotechnology for neural electrode-tissue interfaces.
    Liu S; Zhao Y; Hao W; Zhang XD; Ming D
    Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Piezoelectric materials for tissue regeneration: A review.
    Rajabi AH; Jaffe M; Arinzeh TL
    Acta Biomater; 2015 Sep; 24():12-23. PubMed ID: 26162587
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nanostructured gold electrodes promote neural maturation and network connectivity.
    Domínguez-Bajo A; Rosa JM; González-Mayorga A; Rodilla BL; Arché-Núñez A; Benayas E; Ocón P; Pérez L; Camarero J; Miranda R; González MT; Aguilar J; López-Dolado E; Serrano MC
    Biomaterials; 2021 Dec; 279():121186. PubMed ID: 34700221
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants.
    Kumosa LS
    Adv Sci (Weinh); 2023 Feb; 10(6):e2205095. PubMed ID: 36596702
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Neural prostheses in clinical applications--trends from precision mechanics towards biomedical microsystems in neurological rehabilitation.
    Stieglitz T; Schuettler M; Koch KP
    Biomed Tech (Berl); 2004 Apr; 49(4):72-7. PubMed ID: 15171585
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gold nanostructures: synthesis, properties, and neurological applications.
    Zare I; Yaraki MT; Speranza G; Najafabadi AH; Shourangiz-Haghighi A; Nik AB; Manshian BB; Saraiva C; Soenen SJ; Kogan MJ; Lee JW; Apollo NV; Bernardino L; Araya E; Mayer D; Mao G; Hamblin MR
    Chem Soc Rev; 2022 Apr; 51(7):2601-2680. PubMed ID: 35234776
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanotechnology Enables Novel Modalities for Neuromodulation.
    Yang X; McGlynn E; Das R; Paşca SP; Cui B; Heidari H
    Adv Mater; 2021 Dec; 33(52):e2103208. PubMed ID: 34668249
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics.
    Szostak KM; Grand L; Constandinou TG
    Front Neurosci; 2017; 11():665. PubMed ID: 29270103
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Engineering Multi-Scale Organization for Biotic and Organic Abiotic Electroactive Systems.
    Yao ZF; Lundqvist E; Kuang Y; Ardoña HAM
    Adv Sci (Weinh); 2023 Apr; 10(10):e2205381. PubMed ID: 36670065
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA; Lovell NH; Wallace GG; Poole-Warren LA
    Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Neural engineering--a new discipline for analyzing and interacting with the nervous system.
    Durand DM
    Methods Inf Med; 2007; 46(2):142-6. PubMed ID: 17347744
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bioactive Neuroelectronic Interfaces.
    Adewole DO; Serruya MD; Wolf JA; Cullen DK
    Front Neurosci; 2019; 13():269. PubMed ID: 30983957
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Semiconducting electrodes for neural interfacing: a review.
    Ahnood A; Chambers A; Gelmi A; Yong KT; Kavehei O
    Chem Soc Rev; 2023 Feb; 52(4):1491-1518. PubMed ID: 36734845
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges.
    Variola F; Vetrone F; Richert L; Jedrzejowski P; Yi JH; Zalzal S; Clair S; Sarkissian A; Perepichka DF; Wuest JD; Rosei F; Nanci A
    Small; 2009 May; 5(9):996-1006. PubMed ID: 19360718
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Materials Perspectives for Self-Powered Cardiac Implantable Electronic Devices toward Clinical Translation.
    Li J; Wang X
    Acc Mater Res; 2021 Sep; 2(9):739-750. PubMed ID: 35386361
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wireless interfaces for brain neurotechnologies.
    Kim HJ; Ho JS
    Philos Trans A Math Phys Eng Sci; 2022 Jul; 380(2228):20210020. PubMed ID: 35658679
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tutorial: a computational framework for the design and optimization of peripheral neural interfaces.
    Romeni S; Valle G; Mazzoni A; Micera S
    Nat Protoc; 2020 Oct; 15(10):3129-3153. PubMed ID: 32989306
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The future application of nanomedicine and biomimicry in plastic and reconstructive surgery.
    Amin K; Moscalu R; Imere A; Murphy R; Barr S; Tan Y; Wong R; Sorooshian P; Zhang F; Stone J; Fildes J; Reid A; Wong J
    Nanomedicine (Lond); 2019 Oct; 14(20):2679-2696. PubMed ID: 31668141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.