BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35716006)

  • 21. Intra-periaqueductal gray matter administration of orexin-A exaggerates pulpitis-induced anxiogenic responses and c-fos expression mainly through the interaction with orexin 1 and cannabinoid 1 receptors in rats.
    Pourrahimi AM; Abbasnejad M; Esmaeili-Mahani S; Kooshki R; Raoof M
    Neuropeptides; 2019 Feb; 73():25-33. PubMed ID: 30587409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversal of sex differences in morphine analgesia elicited from the ventrolateral periaqueductal gray in rats by neonatal hormone manipulations.
    Krzanowska EK; Ogawa S; Pfaff DW; Bodnar RJ
    Brain Res; 2002 Mar; 929(1):1-9. PubMed ID: 11852025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings.
    Lötsch J; Weyer-Menkhoff I; Tegeder I
    Eur J Pain; 2018 Mar; 22(3):471-484. PubMed ID: 29160600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeated morphine treatment alters cannabinoid modulation of GABAergic synaptic transmission within the rat periaqueductal grey.
    Wilson-Poe AR; Lau BK; Vaughan CW
    Br J Pharmacol; 2015 Jan; 172(2):681-90. PubMed ID: 24916363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electroacupuncture modulates vlPAG release of GABA through presynaptic cannabinoid CB1 receptors.
    Fu LW; Longhurst JC
    J Appl Physiol (1985); 2009 Jun; 106(6):1800-9. PubMed ID: 19359606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism Underlying the Analgesic Effect Exerted by Endomorphin-1 in the rat Ventrolateral Periaqueductal Gray.
    Chen T; Li J; Feng B; Hui R; Dong YL; Huo FQ; Zhang T; Yin JB; Du JQ; Li YQ
    Mol Neurobiol; 2016 Apr; 53(3):2036-2053. PubMed ID: 25876512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Median nerve stimulation induces analgesia via orexin-initiated endocannabinoid disinhibition in the periaqueductal gray.
    Chen YH; Lee HJ; Lee MT; Wu YT; Lee YH; Hwang LL; Hung MS; Zimmer A; Mackie K; Chiou LC
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):E10720-E10729. PubMed ID: 30348772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Divergent modulation of pain and anxiety by GABAergic neurons in the ventrolateral periaqueductal gray and dorsal raphe.
    Xie L; Wu H; Chen Q; Xu F; Li H; Xu Q; Jiao C; Sun L; Ullah R; Chen X
    Neuropsychopharmacology; 2023 Sep; 48(10):1509-1519. PubMed ID: 36526697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray.
    Samineni VK; Grajales-Reyes JG; Copits BA; O'Brien DE; Trigg SL; Gomez AM; Bruchas MR; Gereau RW
    eNeuro; 2017; 4(2):. PubMed ID: 28374016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus.
    Hájos N; Ledent C; Freund TF
    Neuroscience; 2001; 106(1):1-4. PubMed ID: 11564411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety.
    Taylor NE; Pei J; Zhang J; Vlasov KY; Davis T; Taylor E; Weng FJ; Van Dort CJ; Solt K; Brown EN
    eNeuro; 2019; 6(1):. PubMed ID: 31058210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of dorsomedial and ventrolateral columns of the periaqueductal gray matter and in situ 5-HT₂A and 5-HT₂C serotonergic receptors in post-ictal antinociception.
    de Freitas RL; de Oliveira RC; de Oliveira R; Paschoalin-Maurin T; de Aguiar Corrêa FM; Coimbra NC
    Synapse; 2014 Jan; 68(1):16-30. PubMed ID: 23913301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acetaminophen Relieves Inflammatory Pain through CB
    Klinger-Gratz PP; Ralvenius WT; Neumann E; Kato A; Nyilas R; Lele Z; Katona I; Zeilhofer HU
    J Neurosci; 2018 Jan; 38(2):322-334. PubMed ID: 29167401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Labetalol facilitates GABAergic transmission to rat periaqueductal gray neurons via antagonizing beta1-adrenergic receptors--a possible mechanism underlying labetalol-induced analgesia.
    Xiao C; Zhou C; Atlas G; Delphin E; Ye JH
    Brain Res; 2008 Mar; 1198():34-43. PubMed ID: 18262504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Positive allosteric modulation of the cannabinoid type-1 receptor (CB1R) in periaqueductal gray (PAG) antagonizes anti-nociceptive and cellular effects of a mu-opioid receptor agonist in morphine-withdrawn rats.
    Datta U; Kelley LK; Middleton JW; Gilpin NW
    Psychopharmacology (Berl); 2020 Dec; 237(12):3729-3739. PubMed ID: 32857187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Divergent Response to Cannabinoid Receptor Stimulation in High and Low Stress-Induced Analgesia Mouse Lines Is Associated with Differential G-Protein Activation.
    Lesniak A; Chmielewska D; Poznanski P; Bujalska-Zadrozny M; Strzemecka J; Sacharczuk M
    Neuroscience; 2019 Apr; 404():246-258. PubMed ID: 30794845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Angiotensin III modulates the nociceptive control mediated by the periaqueductal gray matter.
    Pelegrini-da-Silva A; Rosa E; Guethe LM; Juliano MA; Prado WA; Martins AR
    Neuroscience; 2009 Dec; 164(3):1263-73. PubMed ID: 19747525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cannabinoids in the descending pain modulatory circuit: Role in inflammation.
    Bouchet CA; Ingram SL
    Pharmacol Ther; 2020 May; 209():107495. PubMed ID: 32004514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons.
    Albayram Ö; Passlick S; Bilkei-Gorzo A; Zimmer A; Steinhäuser C
    Pflugers Arch; 2016 Apr; 468(4):727-37. PubMed ID: 26739712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An analgesic pathway from parvocellular oxytocin neurons to the periaqueductal gray in rats.
    Iwasaki M; Lefevre A; Althammer F; Clauss Creusot E; Łąpieś O; Petitjean H; Hilfiger L; Kerspern D; Melchior M; Küppers S; Krabichler Q; Patwell R; Kania A; Gruber T; Kirchner MK; Wimmer M; Fröhlich H; Dötsch L; Schimmer J; Herpertz SC; Ditzen B; Schaaf CP; Schönig K; Bartsch D; Gugula A; Trenk A; Blasiak A; Stern JE; Darbon P; Grinevich V; Charlet A
    Nat Commun; 2023 Feb; 14(1):1066. PubMed ID: 36828816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.