These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 35716218)
1. Parameters optimization using an artificial neural networks and release characteristics of humic acids during lignite bioconversion. Yao JH; Xu BC; Zhuo DY; Xiao L Bioprocess Biosyst Eng; 2022 Jul; 45(7):1223-1235. PubMed ID: 35716218 [TBL] [Abstract][Full Text] [Related]
2. Bioconversion of lignite humic acid by white-rot fungi and characterization of products. Xiao L; Li Y; Liao Y; Ma H; Wu J; Zhang Y; Yao J 3 Biotech; 2018 May; 8(5):258. PubMed ID: 29765816 [TBL] [Abstract][Full Text] [Related]
3. Parametric optimization and structural feature analysis of humic acid extraction from lignite. Rashid T; Sher F; Jusoh M; Joya TA; Zhang S; Rasheed T; Lima EC Environ Res; 2023 Mar; 220():115160. PubMed ID: 36580987 [TBL] [Abstract][Full Text] [Related]
4. Application of artificial neural networks to co-combustion of hazelnut husk-lignite coal blends. Yıldız Z; Uzun H; Ceylan S; Topcu Y Bioresour Technol; 2016 Jan; 200():42-7. PubMed ID: 26476163 [TBL] [Abstract][Full Text] [Related]
5. Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. Kurková M; Klika Z; Kliková C; Havel J Chemosphere; 2004 Feb; 54(8):1237-45. PubMed ID: 14664853 [TBL] [Abstract][Full Text] [Related]
6. Quantitative estimation of peat, brown coal and lignite humic acids using chemical parameters, 1H-NMR and DTA analyses. Francioso O; Ciavatta C; Montecchio D; Tugnoli V; Sánchez-Cortés S; Gessa C Bioresour Technol; 2003 Jul; 88(3):189-95. PubMed ID: 12618040 [TBL] [Abstract][Full Text] [Related]
7. Sorption of metal ions on lignite and the derived humic substances. Havelcová M; Mizera J; Sýkorová I; Pekar M J Hazard Mater; 2009 Jan; 161(1):559-64. PubMed ID: 18490104 [TBL] [Abstract][Full Text] [Related]
8. Activation of Humic Acid in Lignite Using Molybdate-Phosphorus Hierarchical Hollow Nanosphere Catalyst Oxidation: Molecular Characterization and Rice Seed Germination-Promoting Performances. Tang Y; Hou S; Yang Y; Cheng D; Gao B; Wan Y; Li YC; Yao Y; Zhang S; Xie J J Agric Food Chem; 2020 Nov; 68(47):13620-13631. PubMed ID: 33140972 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of oxidation stability of lignite humic substances by DSC induction period measurement. Kucerík J; Kovár J; Pekar M; Simon P Naturwissenschaften; 2005 Jul; 92(7):336-40. PubMed ID: 15905976 [TBL] [Abstract][Full Text] [Related]
10. Investigation of thermal conversion characteristics and performance evaluation of co-combustion of pine sawdust and lignite coal using TGA, artificial neural network modeling and likelihood method. Buyukada M Bioresour Technol; 2019 Sep; 287():121461. PubMed ID: 31121444 [TBL] [Abstract][Full Text] [Related]
11. H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components. Drosos M; Leenheer JA; Avgeropoulos A; Deligiannakis Y Environ Sci Pollut Res Int; 2014 Mar; 21(5):3963-71. PubMed ID: 24297463 [TBL] [Abstract][Full Text] [Related]
12. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings. Cao X; Drosos M; Leenheer JA; Mao J Environ Sci Technol; 2016 Feb; 50(4):1663-9. PubMed ID: 26836017 [TBL] [Abstract][Full Text] [Related]
13. Degradation/solubilization of Chinese lignite by Penicillium sp. P6. Yuan HL; Yang JS; Wang FQ; Chen WX Prikl Biokhim Mikrobiol; 2006; 42(1):59-62. PubMed ID: 16521578 [TBL] [Abstract][Full Text] [Related]
14. Extraction optimization and quality evaluation of humic acids from lignite using the cell-free filtrate of Li S; Tan J; Wang Y; Li P; Hu D; Shi Q; Yue Y; Li F; Han Y RSC Adv; 2021 Dec; 12(1):528-539. PubMed ID: 35424480 [TBL] [Abstract][Full Text] [Related]
15. Co-Thermal Oxidation of Lignite and Rice Straw for Synthetization of Composite Humic Substances: Parametric Optimization via Response Surface Methodology. Li Y; Chen X; Zhuo Z; Li X; Sun T; Liu P; Lei T Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554757 [TBL] [Abstract][Full Text] [Related]
16. Laboratory investigation and core flood demonstration of enhanced biogenic methane generation from lignite. Basera P; Lavania M; Singh N; Lal B Front Bioeng Biotechnol; 2024; 12():1308308. PubMed ID: 38440326 [TBL] [Abstract][Full Text] [Related]
17. Determination of the apparent rate constants of the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solutions with neural network. Oguz E; Tortum A; Keskinler B J Hazard Mater; 2008 Sep; 157(2-3):455-63. PubMed ID: 18289778 [TBL] [Abstract][Full Text] [Related]
18. Optimization of process parameters for improved chitinase activity from Suryawanshi N; Sahu J; Moda Y; Eswari JS Prep Biochem Biotechnol; 2020; 50(10):1031-1041. PubMed ID: 32713255 [TBL] [Abstract][Full Text] [Related]
19. Process Condition Optimization and Structural Feature Analysis of Humic Acid Extraction from Weathered Lignite. Yang Y; Li Y; Zhang Y; Wang M; Wang P; Liu D ACS Omega; 2024 Sep; 9(37):38409-38422. PubMed ID: 39310133 [TBL] [Abstract][Full Text] [Related]
20. Abiotic reduction of Cr(VI) by humic acids derived from peat and lignite: kinetics and removal mechanism. Aldmour ST; Burke IT; Bray AW; Baker DL; Ross AB; Gill FL; Cibin G; Ries ME; Stewart DI Environ Sci Pollut Res Int; 2019 Feb; 26(5):4717-4729. PubMed ID: 30565111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]