BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35716565)

  • 1. Efficient Cr(VI) removal from wastewater by D-(+)-xylose based adsorbent: Key roles of three-dimensional porous structures and oxygen groups.
    Liang H; Li Y; Zhao X; Gao C; Zhang H; Geng Z; She D
    J Hazard Mater; 2022 Sep; 437():129345. PubMed ID: 35716565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel lignin-based hierarchical porous carbon for efficient and selective removal of Cr(VI) from wastewater.
    Liang H; Ding W; Zhang H; Peng P; Peng F; Geng Z; She D; Li Y
    Int J Biol Macromol; 2022 Apr; 204():310-320. PubMed ID: 35149091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of chromium (VI) from water by porous carbon derived from corn straw: Influencing factors, regeneration and mechanism.
    Ma H; Yang J; Gao X; Liu Z; Liu X; Xu Z
    J Hazard Mater; 2019 May; 369():550-560. PubMed ID: 30818119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adsorbent preparation of FeOOH@PU for effective chromium (VI) removal.
    Tao R; Li H; Liu Z; Zhang X; Wang M; Shen W; Qu M; Mei Y
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):33160-33169. PubMed ID: 36474032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample.
    Akar S; Lorestani B; Sobhanardakani S; Cheraghi M; Moradi O
    Environ Monit Assess; 2019 May; 191(6):373. PubMed ID: 31102030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage hydrothermal oxygenation for efficient removal of Cr(VI) by starch-based polyporous carbon: Wastewater application and removal mechanism.
    Liang H; Wu H; Fang W; Ma K; Zhao X; Geng Z; She D; Hu H
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130812. PubMed ID: 38484806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a novel illite@carbon nanocomposite adsorbent for removal of Cr(VI) from wastewater.
    Wang G; Wang S; Sun W; Sun Z; Zheng S
    J Environ Sci (China); 2017 Jul; 57():62-71. PubMed ID: 28647266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear regression analysis and response surface modeling of Cr (VI) removal from synthetic wastewater by an agro-waste
    Kumari B; Tiwary RK; Yadav M; Singh KMP
    Int J Phytoremediation; 2021; 23(8):791-808. PubMed ID: 33349031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel superparamagnetic micro-nano-bio-adsorbent PDA/Fe
    Li L; Zhong D; Xu Y; Zhong N
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23981-23993. PubMed ID: 31222649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A magnetic MIL-125-NH
    Wang S; Liu Y; Hu Y; Shen W
    Int J Biol Macromol; 2023 Jan; 226():1054-1065. PubMed ID: 36436607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance and mechanism of starch-based porous carbon capture of Cr(VI) from water.
    Li Y; Gao C; Shuai K; Hashan D; Liu J; She D
    Int J Biol Macromol; 2023 Jun; 241():124597. PubMed ID: 37116837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene oxide chemically reduced and functionalized with KOH-PEI for efficient Cr(VI) adsorption and reduction in acidic medium.
    Tadjenant Y; Dokhan N; Barras A; Addad A; Jijie R; Szunerits S; Boukherroub R
    Chemosphere; 2020 Nov; 258():127316. PubMed ID: 32559494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea.
    Cherdchoo W; Nithettham S; Charoenpanich J
    Chemosphere; 2019 Apr; 221():758-767. PubMed ID: 30684773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater.
    Ren T; He P; Niu W; Wu Y; Ai L; Gou X
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):155-62. PubMed ID: 22392693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semicontinuous enhanced electroreduction of Cr(VI) in wastewater by cathode constructed of copper rods coated with palladium nanoparticles followed by adsorption.
    Tabatabaei S; Forouzesh Rad B; Baghdadi M
    Chemosphere; 2020 Jul; 251():126309. PubMed ID: 32443244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.
    Suksabye P; Thiravetyan P
    J Environ Manage; 2012 Jul; 102():1-8. PubMed ID: 22421026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porphyrin-based conjugated microporous adsorbent material for the efficient remediation of hexavalent chromium from the aquatic environment.
    Lone IA; Beig SUR; Kumar R; Shah SA
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):81055-81072. PubMed ID: 37314559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption enhancement of Cr(VI) from aqueous solution by polyaniline confined in three-dimensional network of composite porous hydrogel.
    Zhang X; Li Y; Zou W; Ding L; Chen J
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):92404-92416. PubMed ID: 37491493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium.
    Ren L; Xu J; Zhang Y; Zhou J; Chen D; Chang Z
    Int J Biol Macromol; 2019 Aug; 135():898-906. PubMed ID: 31170495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents.
    Gasser MS; Morad GA; Aly HF
    J Hazard Mater; 2007 Apr; 142(1-2):118-29. PubMed ID: 16982142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.