BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35716827)

  • 1. Effects of sugars, fatty acids and amino acids on cytosolic and mitochondrial hydrogen peroxide release from liver cells.
    Fang J; Zhang Y; Gerencser AA; Brand MD
    Free Radic Biol Med; 2022 Aug; 188():92-102. PubMed ID: 35716827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts.
    Wong HS; Benoit B; Brand MD
    Free Radic Biol Med; 2019 Jan; 130():140-150. PubMed ID: 30389498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD
    Plecitá-Hlavatá L; Engstová H; Holendová B; Tauber J; Špaček T; Petrásková L; Křen V; Špačková J; Gotvaldová K; Ježek J; Dlasková A; Smolková K; Ježek P
    Antioxid Redox Signal; 2020 Oct; 33(12):789-815. PubMed ID: 32517485
    [No Abstract]   [Full Text] [Related]  

  • 4. Production of superoxide and hydrogen peroxide in the mitochondrial matrix is dominated by site I
    Fang J; Wong HS; Brand MD
    Redox Biol; 2020 Oct; 37():101722. PubMed ID: 32971363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling.
    Brand MD
    Free Radic Biol Med; 2016 Nov; 100():14-31. PubMed ID: 27085844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production.
    Goncalves RLS; Watson MA; Wong HS; Orr AL; Brand MD
    Redox Biol; 2020 Jan; 28():101341. PubMed ID: 31627168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site I
    Wong HS; Monternier PA; Brand MD
    Free Radic Biol Med; 2019 Nov; 143():545-559. PubMed ID: 31518685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site IQ in mitochondrial complex I generates S1QEL-sensitive superoxide/hydrogen peroxide in both the reverse and forward reactions.
    Gibbs ET; Lerner CA; Watson MA; Wong HS; Gerencser AA; Brand MD
    Biochem J; 2023 Mar; 480(5):363-384. PubMed ID: 36862427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides).
    Li X; Shixuan Zheng ; Jia S; Song F; Zhou C; Wu G
    Amino Acids; 2020 Jul; 52(6-7):1017-1032. PubMed ID: 32656621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose suppresses superoxide generation in metabolically responsive pancreatic beta cells.
    Martens GA; Cai Y; Hinke S; Stangé G; Van de Casteele M; Pipeleers D
    J Biol Chem; 2005 May; 280(21):20389-96. PubMed ID: 15774474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topology of superoxide production from different sites in the mitochondrial electron transport chain.
    St-Pierre J; Buckingham JA; Roebuck SJ; Brand MD
    J Biol Chem; 2002 Nov; 277(47):44784-90. PubMed ID: 12237311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters.
    Quinlan CL; Treberg JR; Perevoshchikova IV; Orr AL; Brand MD
    Free Radic Biol Med; 2012 Nov; 53(9):1807-17. PubMed ID: 22940066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Critical Role of Cell Metabolism for Essential Neutrophil Functions.
    Curi R; Levada-Pires AC; Silva EBD; Poma SO; Zambonatto RF; Domenech P; Almeida MM; Gritte RB; Souza-Siqueira T; Gorjão R; Newsholme P; Pithon-Curi TC
    Cell Physiol Biochem; 2020 Jun; 54(4):629-647. PubMed ID: 32589830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of S1QELs and S3QELs to link mitochondrial sites of superoxide and hydrogen peroxide generation to physiological and pathological outcomes.
    Watson MA; Wong HS; Brand MD
    Biochem Soc Trans; 2019 Oct; 47(5):1461-1469. PubMed ID: 31506330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mitochondrial function and cellular bioenergetics in ageing and disease.
    Brand MD; Orr AL; Perevoshchikova IV; Quinlan CL
    Br J Dermatol; 2013 Jul; 169 Suppl 2(0 2):1-8. PubMed ID: 23786614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of superoxide/hydrogen peroxide production at mitochondrial site I
    Watson MA; Brar H; Gibbs ET; Wong HS; Dighe PA; McKibben B; Riedmaier S; Siu A; Polakowski JS; Segreti JA; Liu X; Chung S; Pliushchev YM; Gesmundo N; Wang Z; Vortherms TA; Brand MD
    Free Radic Biol Med; 2023 Aug; 204():276-286. PubMed ID: 37217089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
    Okoye CN; MacDonald-Jay N; Kamunde C
    Aquat Toxicol; 2019 Sep; 214():105264. PubMed ID: 31377504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term starvation is a strategy to unravel the cellular capacity of oxidizing specific exogenous/endogenous substrates in mitochondria.
    Zeidler JD; Fernandes-Siqueira LO; Carvalho AS; Cararo-Lopes E; Dias MH; Ketzer LA; Galina A; Da Poian AT
    J Biol Chem; 2017 Aug; 292(34):14176-14187. PubMed ID: 28663370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octanoate affects 2,4-dinitrophenol uncoupling in intact isolated rat hepatocytes.
    Sibille B; Keriel C; Fontaine E; Catelloni F; Rigoulet M; Leverve XM
    Eur J Biochem; 1995 Jul; 231(2):498-502. PubMed ID: 7635161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources of superoxide/H2O2 during mitochondrial proline oxidation.
    Goncalves RL; Rothschild DE; Quinlan CL; Scott GK; Benz CC; Brand MD
    Redox Biol; 2014; 2():901-9. PubMed ID: 25184115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.