BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35716883)

  • 1. On the size-regulation of RNA-loaded lipid nanoparticles synthesized by microfluidic device.
    Okuda K; Sato Y; Iwakawa K; Sasaki K; Okabe N; Maeki M; Tokeshi M; Harashima H
    J Control Release; 2022 Aug; 348():648-659. PubMed ID: 35716883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery.
    Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles.
    Sato Y; Okabe N; Note Y; Hashiba K; Maeki M; Tokeshi M; Harashima H
    Acta Biomater; 2020 Jan; 102():341-350. PubMed ID: 31733331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery.
    Sato Y; Note Y; Maeki M; Kaji N; Baba Y; Tokeshi M; Harashima H
    J Control Release; 2016 May; 229():48-57. PubMed ID: 26995758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Manufacturing Process of Lipid Nanoparticles for mRNA Delivery Using Machine Learning.
    Sato S; Sano S; Muto H; Kubara K; Kondo K; Miyazaki T; Suzuki Y; Uemoto Y; Ukai K
    Chem Pharm Bull (Tokyo); 2024; 72(6):529-539. PubMed ID: 38839372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of Process Parameters Influencing the Mean Diameters of siRNA-Containing Lipid Nanoparticles (LNPs) on the in Vitro Activity of Prepared LNPs.
    Nakamura K; Aihara K; Ishida T
    Biol Pharm Bull; 2022; 45(4):497-507. PubMed ID: 35370275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution.
    Nakamura T; Kawai M; Sato Y; Maeki M; Tokeshi M; Harashima H
    Mol Pharm; 2020 Mar; 17(3):944-953. PubMed ID: 31990567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mRNA-Loaded Lipid Nanoparticles Targeting Dendritic Cells for Cancer Immunotherapy.
    Sasaki K; Sato Y; Okuda K; Iwakawa K; Harashima H
    Pharmaceutics; 2022 Jul; 14(8):. PubMed ID: 36015198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery.
    Maeki M; Uno S; Niwa A; Okada Y; Tokeshi M
    J Control Release; 2022 Apr; 344():80-96. PubMed ID: 35183654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery.
    Li Y; Huang X; Lee RJ; Qi Y; Wang K; Hao F; Zhang Y; Lu J; Meng Q; Li S; Xie J; Teng L
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27763492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Production Using a Microfluidic Device of Highly Biocompatible Size-Controlled Noncationic Exosome-like Nanoparticles for RNA Delivery.
    Kimura N; Maeki M; Ishida A; Tani H; Tokeshi M
    ACS Appl Bio Mater; 2021 Feb; 4(2):1783-1793. PubMed ID: 35014524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of siRNA-Loaded Lipid Nanoparticles using a Microfluidic Device.
    Maeki M; Okada Y; Uno S; Niwa A; Ishida A; Tani H; Tokeshi M
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers.
    Maeki M; Fujishima Y; Sato Y; Yasui T; Kaji N; Ishida A; Tani H; Baba Y; Harashima H; Tokeshi M
    PLoS One; 2017; 12(11):e0187962. PubMed ID: 29182626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics.
    De A; Ko YT
    Drug Deliv; 2022 Dec; 29(1):2644-2657. PubMed ID: 35949146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA.
    Lin WS; Bostic WKV; Malmstadt N
    Lab Chip; 2024 Jan; 24(2):162-170. PubMed ID: 38165143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic assembly of lipid-based oligonucleotide nanoparticles.
    Yu B; Zhu J; Xue W; Wu Y; Huang X; Lee LJ; Lee RJ
    Anticancer Res; 2011 Mar; 31(3):771-6. PubMed ID: 21498694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications.
    Lopes C; Cristóvão J; Silvério V; Lino PR; Fonte P
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1381-1395. PubMed ID: 36223174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of non-ionizable lipids and phase mixing methods on structural properties of lipid nanoparticle formulations.
    Pratsinis A; Fan Y; Portmann M; Hammel M; Kou P; Sarode A; Ringler P; Kovacik L; Lauer ME; Lamerz J; Hura GL; Yen CW; Keller M
    Int J Pharm; 2023 Apr; 637():122874. PubMed ID: 36948476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement.
    De A; Ko YT
    Expert Opin Drug Deliv; 2023 Jan; 20(1):75-91. PubMed ID: 36445261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.