BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 35717207)

  • 1. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures.
    Parchebafi A; Tamanaee F; Ehteram H; Ahmad E; Nikzad H; Haddad Kashani H
    Microb Cell Fact; 2022 Jun; 21(1):118. PubMed ID: 35717207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents.
    Dong Z; Zhang X; Zhang Q; Tangthianchaichana J; Guo M; Du S; Lu Y
    Int J Nanomedicine; 2024; 19():1017-1039. PubMed ID: 38317847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-helical cationic antimicrobial peptides: relationships of structure and function.
    Huang Y; Huang J; Chen Y
    Protein Cell; 2010 Feb; 1(2):143-52. PubMed ID: 21203984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current synthetic chemistry towards cyclic antimicrobial peptides.
    He T; Qu R; Zhang J
    J Pept Sci; 2022 Jun; 28(6):e3387. PubMed ID: 34931393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.
    Piotrowska U; Sobczak M; Oledzka E
    Chem Biol Drug Des; 2017 Dec; 90(6):1079-1093. PubMed ID: 28548370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine.
    He S; Yang Z; Li X; Wu H; Zhang L; Shan A; Wang J
    Acta Biomater; 2023 Jul; 164():175-194. PubMed ID: 37100185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
    Nuti R; Goud NS; Saraswati AP; Alvala R; Alvala M
    Curr Med Chem; 2017; 24(38):4303-4314. PubMed ID: 28814242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
    Erdem Büyükkiraz M; Kesmen Z
    J Appl Microbiol; 2022 Mar; 132(3):1573-1596. PubMed ID: 34606679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities.
    Luo Y; Song Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Peptide Combination Can Hinder Resistance Evolution.
    Maron B; Rolff J; Friedman J; Hayouka Z
    Microbiol Spectr; 2022 Aug; 10(4):e0097322. PubMed ID: 35862981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The therapeutic applications of antimicrobial peptides (AMPs): a patent review.
    Kang HK; Kim C; Seo CH; Park Y
    J Microbiol; 2017 Jan; 55(1):1-12. PubMed ID: 28035594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Amphipathic Peptidomimetics as Antimicrobial Agents to Combat Drug Resistance.
    Su M; Su Y
    Molecules; 2024 May; 29(11):. PubMed ID: 38893366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the design of antimicrobial peptide conjugates.
    Silva ARP; Guimarães MS; Rabelo J; Belén LH; Perecin CJ; Farías JG; Santos JHPM; Rangel-Yagui CO
    J Mater Chem B; 2022 May; 10(19):3587-3600. PubMed ID: 35262120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial Peptide Synergies for Fighting Infectious Diseases.
    Mhlongo JT; Waddad AY; Albericio F; de la Torre BG
    Adv Sci (Weinh); 2023 Sep; 10(26):e2300472. PubMed ID: 37407512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and advances in antimicrobial peptide development.
    Botelho Sampaio de Oliveira K; Lopes Leite M; Albuquerque Cunha V; Brito da Cunha N; Luiz Franco O
    Drug Discov Today; 2023 Aug; 28(8):103629. PubMed ID: 37230283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides.
    Panteleev PV; Balandin SV; Ivanov VT; Ovchinnikova TV
    Curr Med Chem; 2017; 24(17):1724-1746. PubMed ID: 28440185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Therapeutic Index of Smp24, a Venom-Derived Antimicrobial Peptide: Increased Activity against Gram-Negative Bacteria.
    Rawson KM; Lacey MM; Strong PN; Miller K
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combating Antimicrobial Resistance by Employing Antimicrobial Peptides: Immunomodulators and Therapeutic Agents against Infectious Diseases.
    Mehraj I; Hamid A; Gani U; Iralu N; Manzoor T; Saleem Bhat S
    ACS Appl Bio Mater; 2024 Apr; 7(4):2023-2035. PubMed ID: 38533844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Peptides: A Promising Avenue for Human Healthcare.
    Bhopale GM
    Curr Pharm Biotechnol; 2020; 21(2):90-96. PubMed ID: 31612826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.