These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
556 related articles for article (PubMed ID: 35717313)
21. Construction and Cloning of Plastic-degrading Recombinant Enzymes (MHETase). Janatunaim RZ; Fibriani A Recent Pat Biotechnol; 2020; 14(3):229-234. PubMed ID: 32160855 [TBL] [Abstract][Full Text] [Related]
22. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates. Narancic T; Salvador M; Hughes GM; Beagan N; Abdulmutalib U; Kenny ST; Wu H; Saccomanno M; Um J; O'Connor KE; Jiménez JI Microb Biotechnol; 2021 Nov; 14(6):2463-2480. PubMed ID: 33404203 [TBL] [Abstract][Full Text] [Related]
23. Recent advances in the discovery, characterization, and engineering of poly(ethylene terephthalate) (PET) hydrolases. Gao R; Pan H; Lian J Enzyme Microb Technol; 2021 Oct; 150():109868. PubMed ID: 34489027 [TBL] [Abstract][Full Text] [Related]
24. Discovery and characterization of two novel polyethylene terephthalate hydrolases: One from a bacterium identified in human feces and one from the Streptomyces genus. Han Z; Nina MRH; Zhang X; Huang H; Fan D; Bai Y J Hazard Mater; 2024 Jul; 472():134532. PubMed ID: 38749251 [TBL] [Abstract][Full Text] [Related]
26. Yeast cell surface display of bacterial PET hydrolase as a sustainable biocatalyst for the degradation of polyethylene terephthalate. Chen Z; Xiao Y; Weber G; Wei R; Wang Z Methods Enzymol; 2021; 648():457-477. PubMed ID: 33579416 [TBL] [Abstract][Full Text] [Related]
27. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Barth M; Honak A; Oeser T; Wei R; Belisário-Ferrari MR; Then J; Schmidt J; Zimmermann W Biotechnol J; 2016 Aug; 11(8):1082-7. PubMed ID: 27214855 [TBL] [Abstract][Full Text] [Related]
28. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review. Kim NK; Lee SH; Park HD Bioresour Technol; 2022 Nov; 363():127931. PubMed ID: 36100185 [TBL] [Abstract][Full Text] [Related]
29. Characterization and engineering of a two-enzyme system for plastics depolymerization. Knott BC; Erickson E; Allen MD; Gado JE; Graham R; Kearns FL; Pardo I; Topuzlu E; Anderson JJ; Austin HP; Dominick G; Johnson CW; Rorrer NA; Szostkiewicz CJ; Copié V; Payne CM; Woodcock HL; Donohoe BS; Beckham GT; McGeehan JE Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25476-25485. PubMed ID: 32989159 [TBL] [Abstract][Full Text] [Related]
30. Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product. Richter PK; Blázquez-Sánchez P; Zhao Z; Engelberger F; Wiebeler C; Künze G; Frank R; Krinke D; Frezzotti E; Lihanova Y; Falkenstein P; Matysik J; Zimmermann W; Sträter N; Sonnendecker C Nat Commun; 2023 Apr; 14(1):1905. PubMed ID: 37019924 [TBL] [Abstract][Full Text] [Related]
31. Machine learning-aided engineering of hydrolases for PET depolymerization. Lu H; Diaz DJ; Czarnecki NJ; Zhu C; Kim W; Shroff R; Acosta DJ; Alexander BR; Cole HO; Zhang Y; Lynd NA; Ellington AD; Alper HS Nature; 2022 Apr; 604(7907):662-667. PubMed ID: 35478237 [TBL] [Abstract][Full Text] [Related]
32. Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus subtilis 168 Mediated by Its Native Signal Peptide. Huang X; Cao L; Qin Z; Li S; Kong W; Liu Y J Agric Food Chem; 2018 Dec; 66(50):13217-13227. PubMed ID: 30465427 [TBL] [Abstract][Full Text] [Related]
33. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Kohlstedt M; Weimer A; Weiland F; Stolzenberger J; Selzer M; Sanz M; Kramps L; Wittmann C Metab Eng; 2022 Jul; 72():337-352. PubMed ID: 35545205 [TBL] [Abstract][Full Text] [Related]
34. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Kim JW; Park SB; Tran QG; Cho DH; Choi DY; Lee YJ; Kim HS Microb Cell Fact; 2020 Apr; 19(1):97. PubMed ID: 32345276 [TBL] [Abstract][Full Text] [Related]
35. [Advances in the structure and function of MHETase]. Yang M; Fan F; He L; Chen J; Wang L; Qiu S; Lyu C; Huang J Sheng Wu Gong Cheng Xue Bao; 2024 Sep; 40(9):2812-2830. PubMed ID: 39319709 [TBL] [Abstract][Full Text] [Related]
36. Structural and functional characterization of an auxiliary domain-containing PET hydrolase from Burkholderiales bacterium. Sagong HY; Kim S; Lee D; Hong H; Lee SH; Seo H; Kim KJ J Hazard Mater; 2022 May; 429():128267. PubMed ID: 35091192 [TBL] [Abstract][Full Text] [Related]
37. Low Carbon Footprint Recycling of Post-Consumer PET Plastic with a Metagenomic Polyester Hydrolase. Sonnendecker C; Oeser J; Richter PK; Hille P; Zhao Z; Fischer C; Lippold H; Blázquez-Sánchez P; Engelberger F; Ramírez-Sarmiento CA; Oeser T; Lihanova Y; Frank R; Jahnke HG; Billig S; Abel B; Sträter N; Matysik J; Zimmermann W ChemSusChem; 2022 May; 15(9):e202101062. PubMed ID: 34129279 [TBL] [Abstract][Full Text] [Related]
38. Microbial Genes for a Circular and Sustainable Bio-PET Economy. Salvador M; Abdulmutalib U; Gonzalez J; Kim J; Smith AA; Faulon JL; Wei R; Zimmermann W; Jimenez JI Genes (Basel); 2019 May; 10(5):. PubMed ID: 31100963 [TBL] [Abstract][Full Text] [Related]
39. Engineering adipic acid metabolism in Pseudomonas putida. Ackermann YS; Li WJ; Op de Hipt L; Niehoff PJ; Casey W; Polen T; Köbbing S; Ballerstedt H; Wynands B; O'Connor K; Blank LM; Wierckx N Metab Eng; 2021 Sep; 67():29-40. PubMed ID: 33965615 [TBL] [Abstract][Full Text] [Related]
40. In Silico Analysis and Biochemical Characterization of Thapa G; Han SR; Paudel P; Kim MS; Hong YS; Oh TJ J Microbiol Biotechnol; 2024 Sep; 34(9):1836-1847. PubMed ID: 39187447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]