These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35717669)

  • 21. Bone Healing Materials in the Treatment of Recalcitrant Nonunions and Bone Defects.
    Rodríguez-Merchán EC
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vitro and In Vivo Biocompatibility Of ReOss® in Powder and Putty Configurations.
    Pintor AVB; Resende RFB; Neves ATN; Alves GG; Coelho PG; Granjeiro JM; Calasans-Maia MD
    Braz Dent J; 2018; 29(2):117-127. PubMed ID: 29898056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Citrate-based Biodegradable Injectable hydrogel Composites for Orthopedic Applications.
    Gyawali D; Nair P; Kim HK; Yang J
    Biomater Sci; 2013 Jan; 1(1):52-64. PubMed ID: 23977427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A moldable putty containing silk fibroin yolk shell particles for improved hemostasis and bone repair.
    Saran K; Shi P; Ranjan S; Goh JC; Zhang Y
    Adv Healthc Mater; 2015 Feb; 4(3):432-45. PubMed ID: 25296961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation, characterization, and in vitro and in vivo biocompatibility evaluation of polymer (amino acid and glycolic acid)/hydroxyapatite composite for bone repair.
    Fan X; Li L; Zhu H; Yan L; Zhu S; Yan Y
    Biomed Mater; 2021 Feb; 16(2):025004. PubMed ID: 33599212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Citrate-based biphasic scaffolds for the repair of large segmental bone defects.
    Guo Y; Tran RT; Xie D; Wang Y; Nguyen DY; Gerhard E; Guo J; Tang J; Zhang Z; Bai X; Yang J
    J Biomed Mater Res A; 2015 Feb; 103(2):772-81. PubMed ID: 24829094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined Treatment Effects Using Bioactive-Coated Implants and Ceramic Granulate in a Rabbit Femoral Condyle Model.
    Preethanath RS; Rajesh P; Varma H; Anil S; Jansen JA; van den Beucken JJ
    Clin Implant Dent Relat Res; 2016 Aug; 18(4):666-77. PubMed ID: 26115085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of resorbable carbonate-substituted hollow hydroxyapatite microspheres and their evaluation in osseous defects in vivo.
    Xiao W; Sonny Bal B; Rahaman MN
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():324-332. PubMed ID: 26706537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early tissue response to citric acid-based micro- and nanocomposites.
    Chung EJ; Qiu H; Kodali P; Yang S; Sprague SM; Hwong J; Koh J; Ameer GA
    J Biomed Mater Res A; 2011 Jan; 96(1):29-37. PubMed ID: 20949482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale Silk-Hydroxyapatite Hydrogels for Injectable Bone Biomaterials.
    Ding Z; Han H; Fan Z; Lu H; Sang Y; Yao Y; Cheng Q; Lu Q; Kaplan DL
    ACS Appl Mater Interfaces; 2017 May; 9(20):16913-16921. PubMed ID: 28471165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration.
    Danoux CB; Barbieri D; Yuan H; de Bruijn JD; van Blitterswijk CA; Habibovic P
    Biomatter; 2014; 4():e27664. PubMed ID: 24441389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.
    Subramaniam S; Fang YH; Sivasubramanian S; Lin FH; Lin CP
    Biomaterials; 2016 Jan; 74():99-108. PubMed ID: 26454048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, Characterization, In Vitro Cytological Responses, and In Vivo Bone Regeneration Effects of Low-Crystalline Nanocarbonated Hydroxyapatite.
    Lu T; Yan S; Shi H; Ye J
    ACS Biomater Sci Eng; 2023 Feb; 9(2):918-931. PubMed ID: 36700921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of hydroxyapatite in citric acid-based nanocomposites: surface characteristics, degradation, and osteogenicity in vitro.
    Chung EJ; Sugimoto MJ; Ameer GA
    Acta Biomater; 2011 Nov; 7(11):4057-63. PubMed ID: 21784176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Closure of critical sized defects with allogenic and alloplastic bone substitutes.
    Clokie CM; Moghadam H; Jackson MT; Sandor GK
    J Craniofac Surg; 2002 Jan; 13(1):111-21; discussion 122-3. PubMed ID: 11887007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collagen-hydroxyapatite composites with applications as bone substitutes: synthesis and characterisation.
    Flocea P; Popa M; Munteanu F; Vereştiuc L
    Rev Med Chir Soc Med Nat Iasi; 2009; 113(1):286-92. PubMed ID: 21491817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants.
    Babiker H; Ding M; Sandri M; Tampieri A; Overgaard S
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):759-66. PubMed ID: 22331824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxyapatite-polymer biocomposites for bone regeneration: A review of current trends.
    Ramesh N; Moratti SC; Dias GJ
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):2046-2057. PubMed ID: 28650094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.
    Alothman OY; Almajhdi FN; Fouad H
    Biomed Eng Online; 2013 Sep; 12():95. PubMed ID: 24059280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.