BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35717672)

  • 1. Label-Free Quantification of Molecular Interaction in Live Red Blood Cells by Tracking Nanometer Scale Membrane Fluctuations.
    Yao B; Yang Y; Yu N; Tao N; Wang D; Wang S; Zhang F
    Small; 2022 Jul; 18(28):e2201623. PubMed ID: 35717672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells.
    Wang W; Yang Y; Wang S; Nagaraj VJ; Liu Q; Wu J; Tao N
    Nat Chem; 2012 Oct; 4(10):846-53. PubMed ID: 23000999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-Free Quantification of Small-Molecule Binding to Membrane Proteins on Single Cells by Tracking Nanometer-Scale Cellular Membrane Deformation.
    Zhang F; Jing W; Hunt A; Yu H; Yang Y; Wang S; Chen HY; Tao N
    ACS Nano; 2018 Feb; 12(2):2056-2064. PubMed ID: 29397682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Quantification of Protein Binding Kinetics in Whole Cells with Surface Plasmon Resonance Imaging and Edge Deformation Tracking.
    Jing W; Hunt A; Tao N; Zhang F; Wang S
    Membranes (Basel); 2020 Sep; 10(9):. PubMed ID: 32971834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR).
    Krotkiewska B; Pasek M; Krotkiewski H
    Acta Biochim Pol; 2002; 49(2):481-90. PubMed ID: 12362990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance for real-time study of lectin-carbohydrate interactions for the differentiation and identification of glycoproteins.
    Safina G; Duran IuB; Alasel M; Danielsson B
    Talanta; 2011 Jun; 84(5):1284-90. PubMed ID: 21641439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPR studies of carbohydrate-lectin interactions as useful tool for screening on lectin sources.
    Vornholt W; Hartmann M; Keusgen M
    Biosens Bioelectron; 2007 Jun; 22(12):2983-8. PubMed ID: 17261364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance.
    Haseley SR; Talaga P; Kamerling JP; Vliegenthart JF
    Anal Biochem; 1999 Oct; 274(2):203-10. PubMed ID: 10527517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Live Cells versus Fixated Cells: Kinetic Measurements of Biomolecular Interactions with the LigandTracer Method and Surface Plasmon Resonance Microscopy.
    Dong T; Han C; Liu X; Wang Z; Wang Y; Kang Q; Wang P; Zhou F
    Mol Pharm; 2023 Apr; 20(4):2094-2104. PubMed ID: 36939457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance as a tool to characterize lectin-carbohydrate interactions.
    Shinohara Y; Furukawa J
    Methods Mol Biol; 2014; 1200():185-205. PubMed ID: 25117236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate-lectin interactions assessed by surface plasmon resonance.
    Duverger E; Frison N; Roche AC; Monsigny M
    Biochimie; 2003; 85(1-2):167-79. PubMed ID: 12765786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of influenza virus hemagglutinin in process samples using weak affinity ligands and surface plasmon resonance.
    Mandenius CF; Wang R; Aldén A; Bergström G; Thébault S; Lutsch C; Ohlson S
    Anal Chim Acta; 2008 Aug; 623(1):66-75. PubMed ID: 18611459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-Protein Interactions: Surface Plasmon Resonance.
    Douzi B
    Methods Mol Biol; 2017; 1615():257-275. PubMed ID: 28667619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized glycosylated Fmoc-amino acid for SPR: comparative studies of lectin-binding to linear or biantennary diLacNAc structures.
    Nakamura K; Sakagami H; Asanuma-Date K; Nagasawa N; Nakahara Y; Akiyama H; Ogawa H
    Carbohydr Res; 2013 Dec; 382():77-85. PubMed ID: 24211369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring binding kinetics of surface-bound molecules using the surface plasmon resonance technique.
    Li B; Chen J; Long M
    Anal Biochem; 2008 Jun; 377(2):195-201. PubMed ID: 18384740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular micromotion monitored by long-range surface plasmon resonance with optical fluctuation analysis.
    Yang CT; Méjard R; Griesser HJ; Bagnaninchi PO; Thierry B
    Anal Chem; 2015 Feb; 87(3):1456-61. PubMed ID: 25495915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant effect of resveratrol in single red blood cells measured by thermal fluctuation spectroscopy.
    Gallardo MJ; Suwalsky M; Ramírez D; Tapia J; Sepulveda B
    Arch Biochem Biophys; 2019 Apr; 665():30-35. PubMed ID: 30796890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Surface Plasmon Resonance to Quantitatively Assess Lipid-Protein Interactions.
    Del Vecchio K; Stahelin RV
    Methods Mol Biol; 2016; 1376():141-53. PubMed ID: 26552681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free analysis of membrane protein binding kinetics and cell adhesions using evanescent scattering microscopy.
    Xu J; Huang C; Li L; Zhao Y; Guo Z; Chen Y; Zhang P
    Analyst; 2023 Oct; 148(20):5084-5093. PubMed ID: 37671903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.