These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 35717708)

  • 21. Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: the role of filter media, vegetation and saturated zone.
    Glaister BJ; Fletcher TD; Cook PL; Hatt BE
    Water Sci Technol; 2014; 69(9):1961-9. PubMed ID: 24804674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viral pathogens in urban stormwater runoff: Occurrence and removal via vegetated biochar-amended biofilters.
    Graham KE; Anderson CE; Boehm AB
    Water Res; 2021 Dec; 207():117829. PubMed ID: 34763278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters.
    Blecken GT; Zinger Y; Deletić A; Fletcher TD; Viklander M
    Water Res; 2009 Oct; 43(18):4590-8. PubMed ID: 19683781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater.
    Mohanty SK; Torkelson AA; Dodd H; Nelson KL; Boehm AB
    Environ Sci Technol; 2013 Oct; 47(19):10791-8. PubMed ID: 23721343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Escherichia coli Removal in Biochar-Modified Biofilters: Effects of Biofilm.
    Afrooz AR; Boehm AB
    PLoS One; 2016; 11(12):e0167489. PubMed ID: 27907127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ability of selected filter materials in removing nutrients, metals, and microplastics from stormwater in biofilter structures.
    Kuoppamäki K; Pflugmacher Lima S; Scopetani C; Setälä H
    J Environ Qual; 2021 Mar; 50(2):465-475. PubMed ID: 33480440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Potential Role of Urban Forests in Removing Nutrients from Stormwater.
    Denman EC; May PB; Moore GM
    J Environ Qual; 2016 Jan; 45(1):207-14. PubMed ID: 26828176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofilter design for effective nitrogen removal from stormwater - influence of plant species, inflow hydrology and use of a saturated zone.
    Payne EG; Pham T; Cook PL; Fletcher TD; Hatt BE; Deletic A
    Water Sci Technol; 2014; 69(6):1312-9. PubMed ID: 24647199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stormwater reuse: designing biofiltration systems for reliable treatment.
    Hatt BE; Deletic A; Fletcher TD
    Water Sci Technol; 2007; 55(4):201-9. PubMed ID: 17425087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofilters for stormwater harvesting: understanding the treatment performance of key metals that pose a risk for water use.
    Feng W; Hatt BE; McCarthy DT; Fletcher TD; Deletic A
    Environ Sci Technol; 2012 May; 46(9):5100-8. PubMed ID: 22497642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorus Fate and Dynamics in Greywater Biofiltration Systems.
    Fowdar HS; Hatt BE; Cresswell T; Harrison JJ; Cook PL; Deletic A
    Environ Sci Technol; 2017 Feb; 51(4):2280-2287. PubMed ID: 28068476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of weathering on mobilization of biochar particles and bacterial removal in a stormwater biofilter.
    Mohanty SK; Boehm AB
    Water Res; 2015 Nov; 85():208-15. PubMed ID: 26320722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stormwater biofilter treatment model (MPiRe) for selected micro-pollutants.
    Randelovic A; Zhang K; Jacimovic N; McCarthy D; Deletic A
    Water Res; 2016 Feb; 89():180-91. PubMed ID: 26650452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Survey of the operational status of twenty-six urban stormwater biofilter facilities in Sweden.
    Beryani A; Goldstein A; Al-Rubaei AM; Viklander M; Hunt WF; Blecken GT
    J Environ Manage; 2021 Nov; 297():113375. PubMed ID: 34325375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling faecal microbe dynamics within stormwater constructed wetlands.
    Shi X; Jovanovic D; Meng Z; Hipsey MR; McCarthy D
    Water Res; 2024 Jan; 248():120855. PubMed ID: 37988806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resilience of stormwater biofilters following the deposition of wildfire residues: Implication on downstream water quality management in wildfire-prone regions.
    Raoelison OD; Das TK; Guyett K; Merrifield R; Visweswaran A; Indiresan S; Lin Yang K; Pierce G; Mohanty SK
    J Hazard Mater; 2024 Mar; 465():132989. PubMed ID: 38000283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of design parameters on clogging of stormwater biofilters: a large-scale column study.
    Le Coustumer S; Fletcher TD; Deletic A; Barraud S; Poelsma P
    Water Res; 2012 Dec; 46(20):6743-52. PubMed ID: 22342313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters.
    Parker EA; Rippy MA; Mehring AS; Winfrey BK; Ambrose RF; Levin LA; Grant SB
    Environ Sci Technol; 2017 May; 51(10):5703-5712. PubMed ID: 28445642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stormwater biofilter treatment model for faecal microorganisms.
    Shen P; Deletic A; Urich C; Chandrasena GI; McCarthy DT
    Sci Total Environ; 2018 Jul; 630():992-1002. PubMed ID: 29554784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BioRTC model enables exploration of real time control strategies for stormwater biofilters.
    Shen P; Deletic A; Bratieres K; McCarthy DT
    Water Res; 2023 Dec; 247():120793. PubMed ID: 37944196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.