These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35717849)

  • 61. Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance.
    Wang M; Wang H; Zhang Q; Chen D; Wang S; Wang D; Wu X; Gao W
    ACS Nano; 2024 Sep; 18(37):25813-25825. PubMed ID: 39214622
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of cobalt doping on the electrochemical performance of trimanganese tetraoxide.
    Shunmugapriya B; Rose A; Maiyalagan T; Vijayakumar T
    Nanotechnology; 2020 Apr; 31(28):285401. PubMed ID: 32203945
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interfacial Engineering Coupled Valence Tuning of MoO
    Liu Y; Wang J; Zeng Y; Liu J; Liu X; Lu X
    Small; 2020 Mar; 16(11):e1907458. PubMed ID: 32068969
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries.
    Huang JQ; Guo X; Lin X; Zhu Y; Zhang B
    Research (Wash D C); 2019; 2019():2635310. PubMed ID: 31912030
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-Ion Batteries.
    Sun Q; Cheng H; Nie W; Lu X; Zhao H
    Chem Asian J; 2022 Apr; 17(7):e202200067. PubMed ID: 35188329
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Efficient enhancement on crystallization and electrochemical performance of LiMn
    Hao J; Hao S; Xie M
    Heliyon; 2022 Dec; 8(12):e12145. PubMed ID: 36561664
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers.
    Wan F; Zhang L; Dai X; Wang X; Niu Z; Chen J
    Nat Commun; 2018 Apr; 9(1):1656. PubMed ID: 29695711
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Understanding the Dual-Phase Synergy Mechanism in Mn
    Liu L; Zhang L; Wang K; Wu H; Mao H; Li L; Sun Z; Lu S; Zhang D; Yu W; Ding S
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33846-33854. PubMed ID: 32614568
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries.
    Wang JG; Jin D; Zhou R; Li X; Liu XR; Shen C; Xie K; Li B; Kang F; Wei B
    ACS Nano; 2016 Jun; 10(6):6227-34. PubMed ID: 27172485
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of Vacancies in Manganese Hexacyanoferrate Cathode for Organic Na-Ion Batteries: A Structural Perspective.
    Li M; Gaboardi M; Mullaliu A; Maisuradze M; Xue X; Aquilanti G; Rikkert Plaisier J; Passerini S; Giorgetti M
    ChemSusChem; 2023 Jun; 16(12):e202300201. PubMed ID: 36852937
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Scalable fabrication of NiCoMnO
    Zhou Y; Wang C; Chen F; Wang T; Ni Y; Yu N; Geng B
    J Colloid Interface Sci; 2022 Nov; 626():314-323. PubMed ID: 35792462
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microwave-enhanced electrochemical cycling performance of the LiNi0.2Mn1.8O4 spinel cathode material at elevated temperature.
    Raju K; Nkosi FP; Viswanathan E; Mathe MK; Damodaran K; Ozoemena KI
    Phys Chem Chem Phys; 2016 May; 18(18):13074-83. PubMed ID: 27113855
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Revealing the Reconstructed Surface of Li[Mn2]O4.
    Amos CD; Roldan MA; Varela M; Goodenough JB; Ferreira PJ
    Nano Lett; 2016 May; 16(5):2899-906. PubMed ID: 27022834
    [TBL] [Abstract][Full Text] [Related]  

  • 74. New Insights into Phase-Mechanism Relationship of Mg
    Yang Z; Pan X; Shen Y; Chen R; Li T; Xu L; Mai L
    Small; 2022 Apr; 18(13):e2107743. PubMed ID: 35122475
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.
    Wu X; Qi Y; Hong JJ; Li Z; Hernandez AS; Ji X
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):13026-13030. PubMed ID: 28859240
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Deep Eutectic Solvent for Facile Synthesis of Mn
    Zdolšek N; Perović I; Brković S; Tasić G; Milović M; Vujković M
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36500035
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Deep-Cycle Aqueous Zinc-Ion Battery Containing an Oxygen-Deficient Vanadium Oxide Cathode.
    Liao M; Wang J; Ye L; Sun H; Wen Y; Wang C; Sun X; Wang B; Peng H
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2273-2278. PubMed ID: 31743581
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High-performance reversible aqueous Zinc-Ion battery based on Zn
    Jing F; Pei J; Zhou Y; Shang Y; Yao S; Liu S; Chen G
    J Colloid Interface Sci; 2022 Mar; 609():557-565. PubMed ID: 34802771
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries.
    Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Intercalation of Zinc Monochloride Cations by Deep Eutectic Solvents for High-Performance Rechargeable Non-aqueous Zinc Ion Batteries.
    Wu SC; Tsa MC; Liao HJ; Su TY; Tang SY; Chen CW; Lo HA; Yang TY; Wang K; Ai Y; Chen YZ; Lee L; Lee JF; Lin CJ; Hwang BJ; Chueh YL
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7814-7825. PubMed ID: 35129350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.