These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 35717877)
61. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. Muhonja CN; Makonde H; Magoma G; Imbuga M PLoS One; 2018; 13(7):e0198446. PubMed ID: 29979708 [TBL] [Abstract][Full Text] [Related]
62. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Ali MI; Ahmed S; Robson G; Javed I; Ali N; Atiq N; Hameed A J Basic Microbiol; 2014 Jan; 54(1):18-27. PubMed ID: 23686796 [TBL] [Abstract][Full Text] [Related]
63. Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Bardají DKR; Furlan JPR; Stehling EG Arch Microbiol; 2019 Jul; 201(5):699-704. PubMed ID: 30815712 [TBL] [Abstract][Full Text] [Related]
64. Sorption of tri-n-butyl phosphate and tris(2-chloroethyl) phosphate on polyethylene and polyvinyl chloride microplastics in seawater. Chen S; Tan Z; Qi Y; Ouyang C Mar Pollut Bull; 2019 Dec; 149():110490. PubMed ID: 31445349 [TBL] [Abstract][Full Text] [Related]
65. Biodegradation of low-density polyethylene film by Bacillus gaemokensis strain SSR01 isolated from the guts of earthworm. Ragu Prasath A; Selvam K; Sudhakar C Environ Geochem Health; 2024 Apr; 46(5):159. PubMed ID: 38592645 [TBL] [Abstract][Full Text] [Related]
66. Biodegradation of various grades of polyethylene microplastics by Tenebrio molitor and Tenebrio obscurus larvae: Effects on their physiology. Ding MQ; Ding J; Zhang ZR; Li MX; Cui CH; Pang JW; Xing DF; Ren NQ; Wu WM; Yang SS J Environ Manage; 2024 May; 358():120832. PubMed ID: 38599089 [TBL] [Abstract][Full Text] [Related]
67. Effect of an Acinetobacter pittobacter on low-density polyethylene. Zhang H; Lu Y; Wu H; Liu Q; Sun W Environ Sci Pollut Res Int; 2023 Jan; 30(4):10495-10504. PubMed ID: 36083369 [TBL] [Abstract][Full Text] [Related]
68. [Effects of Low-density Polyethylene Microplastics on the Growth and Physiology Characteristics of Zhou Y; Jiang WT; Liu XY; Zhu GD; Tang RG; Zhang HB; Cai YJ Huan Jing Ke Xue; 2023 Jul; 44(7):4170-4178. PubMed ID: 37438314 [TBL] [Abstract][Full Text] [Related]
69. An effective method for the rapid detection of microplastics in soil. Li Y; Yao J; Nie P; Feng X; Liu J Chemosphere; 2021 Aug; 276():128696. PubMed ID: 33143887 [TBL] [Abstract][Full Text] [Related]
70. Synergistic effect of UV, thermal, and chemical treatment on biological degradation of low-density polyethylene (LDPE) by Thermomyces lanuginosus. Chaudhary AK; Chaitanya K; Dalmia R; Vijayakumar RP Environ Monit Assess; 2021 Jul; 193(8):513. PubMed ID: 34302548 [TBL] [Abstract][Full Text] [Related]
71. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. Harrison JP; Schratzberger M; Sapp M; Osborn AM BMC Microbiol; 2014 Sep; 14():232. PubMed ID: 25245856 [TBL] [Abstract][Full Text] [Related]
72. Influence of nitric acid on biodegradation of polystyrene and low-density polyethylene by Cephalosporium species. Chaudhary AK; Chitriv SP; Vijayakumar RP Arch Microbiol; 2022 Jul; 204(8):489. PubMed ID: 35835894 [TBL] [Abstract][Full Text] [Related]
73. New insights into the toxic interactions of polyvinyl chloride microplastics with bovine serum albumin. Ju P; Zhang Y; Ding J; Zheng Y; Wang S; Jiang F; Sun C Environ Sci Pollut Res Int; 2021 Feb; 28(5):5520-5531. PubMed ID: 32968899 [TBL] [Abstract][Full Text] [Related]
74. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration. Huerta Lwanga E; Thapa B; Yang X; Gertsen H; Salánki T; Geissen V; Garbeva P Sci Total Environ; 2018 May; 624():753-757. PubMed ID: 29272844 [TBL] [Abstract][Full Text] [Related]
75. Biodegradation of low-density polyethylene by plasma-activated Bacillus strain. Ji SH; Yoo S; Park S; Lee MJ Chemosphere; 2024 Feb; 349():140763. PubMed ID: 38029935 [TBL] [Abstract][Full Text] [Related]
76. Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals. Li W; Meng J; Zhang Y; Haider G; Ge T; Zhang H; Li Z; Yu Y; Shan S Environ Pollut; 2022 Jun; 302():119092. PubMed ID: 35245620 [TBL] [Abstract][Full Text] [Related]
77. Isolation and identification of low-density polyethylene degrading novel bacterial strains. Nadeem H; Alia KB; Muneer F; Rasul I; Siddique MH; Azeem F; Zubair M Arch Microbiol; 2021 Nov; 203(9):5417-5423. PubMed ID: 34402947 [TBL] [Abstract][Full Text] [Related]
78. Achromobacter denitrificans strain SP1 efficiently remediates di(2-ethylhexyl)phthalate. Pradeep S; Josh MK; Binod P; Devi RS; Balachandran S; Anderson RC; Benjamin S Ecotoxicol Environ Saf; 2015 Feb; 112():114-21. PubMed ID: 25463861 [TBL] [Abstract][Full Text] [Related]
79. Biodegradation of polyvinyl chloride by Nyamjav I; Jang Y; Lee YE; Lee S Front Microbiol; 2023; 14():1175249. PubMed ID: 37260687 [TBL] [Abstract][Full Text] [Related]
80. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. Das MP; Kumar S 3 Biotech; 2015 Feb; 5(1):81-86. PubMed ID: 28324364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]