These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 35717911)

  • 1. Anti-diabetic properties of brewer's spent yeast peptides.
    Aquino ME; Drago SR; Sánchez de Medina F; Martínez-Augustin O; Cian RE
    Food Funct; 2024 Apr; 15(7):3778-3790. PubMed ID: 38511218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins-a molecular docking study.
    Iram D; Sansi MS; Zanab S; Vij S; Ashutosh ; Meena S
    J Food Biochem; 2022 Mar; ():e14137. PubMed ID: 35352361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Quinoa Protein Hydrolysate Fractionated by Electrodialysis with Ultrafiltration Membranes Improves Maternal and Fetal Outcomes in a Mouse Model of Gestational Diabetes Mellitus.
    Busso D; González A; Santander N; Saavedra F; Quiroz A; Rivera K; González J; Olmos P; Marette A; Bazinet L; Illanes S; Enrione J
    Mol Nutr Food Res; 2023 Nov; 67(21):e2300047. PubMed ID: 37667444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence alterations affect the antidiabetic attributes of hazelnut peptide fractions during the industrial manufacture and simulated digestion of hazelnut paste.
    Göksu AG; Çakır B; Gülseren İ
    J Food Sci Technol; 2023 Jan; 60(1):171-180. PubMed ID: 36618060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth (
    Serena-Romero G; Ignot-Gutiérrez A; Conde-Rivas O; Lima-Silva MY; Martínez AJ; Guajardo-Flores D; Cruz-Huerta E
    Antioxidants (Basel); 2023 Dec; 12(12):. PubMed ID: 38136195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences.
    Rivero-Pino F; Espejo-Carpio FJ; Guadix EM
    Foods; 2020 Jul; 9(8):. PubMed ID: 32718070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PhytoSelectDBT: A database for the molecular models of anti-diabetic targets docked with bioactive peptides from selected ethno-medicinal plants.
    Roy S; Teron R; Nikku Linga R
    Bioinformation; 2023; 19(9):908-917. PubMed ID: 37928486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative metabolomic profiling and nutritional chemistry of
    Habib Z; Ijaz S; Haq IU
    Physiol Mol Biol Plants; 2023 Dec; 29(12):1959-1979. PubMed ID: 38222284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds.
    Agarwal A; Rizwana ; Tripathi AD; Kumar T; Sharma KP; Patel SKS
    Antioxidants (Basel); 2023 Jul; 12(7):. PubMed ID: 37507952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioassay-guided isolation of Fenghuang Dancong tea constituents with α-glucosidase inhibition activities.
    Zhou H; Liao J; Ou J; Lin J; Zheng J; Li Y; Ou S; Liu F
    Front Nutr; 2022; 9():1050614. PubMed ID: 36438778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An In Silico Framework to Mine Bioactive Peptides from Annotated Proteomes: A Case Study on Pancreatic Alpha Amylase Inhibitory Peptides from Algae and Cyanobacteria.
    Pedroni L; Perugino F; Galaverna G; Dall'Asta C; Dellafiora L
    Nutrients; 2022 Nov; 14(21):. PubMed ID: 36364940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The novel homologue of the human α-glucosidase inhibited by the non-germinated and germinated quinoa protein hydrolysates after in vitro gastrointestinal digestion.
    Salami M; Sadeghian Motahar SF; Ariaeenejad S; Sheykh Abdollahzadeh Mamaghani A; Kavousi K; Moosavi-Movahedi AA; Hosseini Salekdeh G
    J Food Biochem; 2022 Jan; 46(1):e14030. PubMed ID: 34914113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources.
    Rivero-Pino F; Espejo-Carpio FJ; Guadix EM
    Food Chem; 2021 Aug; 354():129473. PubMed ID: 33743449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes.
    González-Montoya M; Hernández-Ledesma B; Mora-Escobedo R; Martínez-Villaluenga C
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30249015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration on bioactive properties of quinoa protein hydrolysate and peptides: a review.
    Guo H; Hao Y; Yang X; Ren G; Richel A
    Crit Rev Food Sci Nutr; 2023; 63(16):2896-2909. PubMed ID: 34581209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia.
    Valenzuela Zamudio F; Hidalgo-Figueroa SN; Ortíz Andrade RR; Hernández Álvarez AJ; Segura Campos MR
    Food Chem; 2022 Nov; 394():133479. PubMed ID: 35717911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amaranth, quinoa and chia bioactive peptides: a comprehensive review on three ancient grains and their potential role in management and prevention of Type 2 diabetes.
    Valenzuela Zamudio F; Segura Campos MR
    Crit Rev Food Sci Nutr; 2022; 62(10):2707-2721. PubMed ID: 33305588
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.