These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 35717911)

  • 21. The novel homologue of the human α-glucosidase inhibited by the non-germinated and germinated quinoa protein hydrolysates after in vitro gastrointestinal digestion.
    Salami M; Sadeghian Motahar SF; Ariaeenejad S; Sheykh Abdollahzadeh Mamaghani A; Kavousi K; Moosavi-Movahedi AA; Hosseini Salekdeh G
    J Food Biochem; 2022 Jan; 46(1):e14030. PubMed ID: 34914113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources.
    Rivero-Pino F; Espejo-Carpio FJ; Guadix EM
    Food Chem; 2021 Aug; 354():129473. PubMed ID: 33743449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes.
    González-Montoya M; Hernández-Ledesma B; Mora-Escobedo R; Martínez-Villaluenga C
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30249015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulated gastrointestinal digestion of camel and bovine casein hydrolysates: Identification and characterization of novel anti-diabetic bioactive peptides.
    Mudgil P; Kamal H; Priya Kilari B; Mohd Salim MAS; Gan CY; Maqsood S
    Food Chem; 2021 Aug; 353():129374. PubMed ID: 33740505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia.
    Valenzuela Zamudio F; Hidalgo-Figueroa SN; Ortíz Andrade RR; Hernández Álvarez AJ; Segura Campos MR
    Food Chem; 2022 Nov; 394():133479. PubMed ID: 35717911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amaranth, quinoa and chia bioactive peptides: a comprehensive review on three ancient grains and their potential role in management and prevention of Type 2 diabetes.
    Valenzuela Zamudio F; Segura Campos MR
    Crit Rev Food Sci Nutr; 2022; 62(10):2707-2721. PubMed ID: 33305588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploration on bioactive properties of quinoa protein hydrolysate and peptides: a review.
    Guo H; Hao Y; Yang X; Ren G; Richel A
    Crit Rev Food Sci Nutr; 2023; 63(16):2896-2909. PubMed ID: 34581209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach.
    Farias TC; de Souza TSP; Fai AEC; Koblitz MGB
    Nutrients; 2022 Oct; 14(20):. PubMed ID: 36296965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioactive peptides from selected latin american food crops - A nutraceutical and molecular approach.
    Orona-Tamayo D; Valverde ME; Paredes-López O
    Crit Rev Food Sci Nutr; 2019; 59(12):1949-1975. PubMed ID: 29388805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anti-diabetic effects of bioactive peptides: recent advances and clinical implications.
    Acquah C; Dzuvor CKO; Tosh S; Agyei D
    Crit Rev Food Sci Nutr; 2022; 62(8):2158-2171. PubMed ID: 33317324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates.
    López DN; Galante M; Raimundo G; Spelzini D; Boeris V
    Food Res Int; 2019 Feb; 116():419-429. PubMed ID: 30716964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents.
    Mohan S; Eskandari R; Pinto BM
    Acc Chem Res; 2014 Jan; 47(1):211-25. PubMed ID: 23964564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review.
    Tang Y; Tsao R
    Mol Nutr Food Res; 2017 Jul; 61(7):. PubMed ID: 28239982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties.
    López DN; Galante M; Robson M; Boeris V; Spelzini D
    Int J Biol Macromol; 2018 Apr; 109():152-159. PubMed ID: 29247732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Food protein-derived bioactive peptides in management of type 2 diabetes.
    Patil P; Mandal S; Tomar SK; Anand S
    Eur J Nutr; 2015 Sep; 54(6):863-80. PubMed ID: 26154777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Amaranth, Quinoa, and Millets for the Development of Healthy, Sustainable Food Products-A
    Balakrishnan G; Schneider RG
    Foods; 2022 Aug; 11(16):. PubMed ID: 36010444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins.
    Nongonierma AB; FitzGerald RJ
    J Food Biochem; 2019 Jan; 43(1):e12451. PubMed ID: 31353485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic Impacts of Maltase Deficiencies.
    Nichols BL; Baker SS; Quezada-Calvillo R
    J Pediatr Gastroenterol Nutr; 2018 Jun; 66 Suppl 3():S24-S29. PubMed ID: 29762372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review.
    Rahmi A; Arcot J
    Foods; 2023 Feb; 12(3):. PubMed ID: 36766167
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.