These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35717935)

  • 1. Low-rank sparse feature selection with incomplete labels for Alzheimer's disease progression prediction.
    Chen Z; Liu Y; Zhang Y; Jin R; Tao J; Chen L
    Comput Biol Med; 2022 Aug; 147():105705. PubMed ID: 35717935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease.
    Cao P; Liu X; Liu H; Yang J; Zhao D; Huang M; Zaiane O
    Comput Methods Programs Biomed; 2018 Aug; 162():19-45. PubMed ID: 29903486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shared Manifold Regularized Joint Feature Selection for Joint Classification and Regression in Alzheimer's Disease Diagnosis.
    Chen Z; Liu Y; Zhang Y; Zhu J; Li Q; Wu X
    IEEE Trans Image Process; 2024; 33():2730-2745. PubMed ID: 38578858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linearized and Kernelized Sparse Multitask Learning for Predicting Cognitive Outcomes in Alzheimer's Disease.
    Liu X; Cao P; Yang J; Zhao D
    Comput Math Methods Med; 2018; 2018():7429782. PubMed ID: 29623103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis.
    Zhu X; Suk HI; Shen D
    Neuroimage; 2014 Oct; 100():91-105. PubMed ID: 24911377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer's Disease.
    Liu X; Cao P; Wang J; Kong J; Zhao D
    Neuroinformatics; 2019 Apr; 17(2):271-294. PubMed ID: 30284672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting task relationships for Alzheimer's disease cognitive score prediction via multi-task learning.
    Liang W; Zhang K; Cao P; Liu X; Yang J; Zaiane OR
    Comput Biol Med; 2023 Jan; 152():106367. PubMed ID: 36516575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relational-Regularized Discriminative Sparse Learning for Alzheimer's Disease Diagnosis.
    Lei B; Yang P; Wang T; Chen S; Ni D
    IEEE Trans Cybern; 2017 Apr; 47(4):1102-1113. PubMed ID: 28092591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal score prediction for Alzheimer's disease based on ensemble correntropy and spatial-temporal constraint.
    Lei B; Hou W; Zou W; Li X; Zhang C; Wang T
    Brain Imaging Behav; 2019 Feb; 13(1):126-137. PubMed ID: 29582337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer's Disease Progression.
    Liu X; Wang J; Ren F; Kong J
    Comput Math Methods Med; 2020; 2020():4036560. PubMed ID: 32104201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alzheimer's disease diagnosis framework from incomplete multimodal data using convolutional neural networks.
    Abdelaziz M; Wang T; Elazab A
    J Biomed Inform; 2021 Sep; 121():103863. PubMed ID: 34229061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Multi-task Learning Model to Predict Alzheimer's Disease Cognitive Assessment.
    Huo Z; Shen D; Huang H
    Med Image Comput Comput Assist Interv; 2016 Oct; 9900():317-325. PubMed ID: 28149966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel relational regularization feature selection method for joint regression and classification in AD diagnosis.
    Zhu X; Suk HI; Wang L; Lee SW; Shen D;
    Med Image Anal; 2017 May; 38():205-214. PubMed ID: 26674971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Resemblance Multi-Target Low-Rank Coding for Prediction of Cognitive Decline With Longitudinal Brain Images.
    Zhang J; Wu J; Li Q; Caselli RJ; Thompson PM; Ye J; Wang Y
    IEEE Trans Med Imaging; 2021 Aug; 40(8):2030-2041. PubMed ID: 33798076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability-Weighted Matrix Completion of Incomplete Multi-modal Data for Disease Diagnosis.
    Thung KH; Adeli E; Yap PT; Shen D
    Med Image Comput Comput Assist Interv; 2016 Oct; 9901():88-96. PubMed ID: 28286884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments Over Progressions.
    Lu L; Elbeleidy S; Baker L; Wang H; Shen L; Heng H
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3336-3346. PubMed ID: 33819146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. View-aligned hypergraph learning for Alzheimer's disease diagnosis with incomplete multi-modality data.
    Liu M; Zhang J; Yap PT; Shen D
    Med Image Anal; 2017 Feb; 36():123-134. PubMed ID: 27898305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel multi-relation regularization method for regression and classification in AD diagnosis.
    Zhu X; Suk HI; Shen D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 3):401-8. PubMed ID: 25320825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying informative imaging biomarkers via tree structured sparse learning for AD diagnosis.
    Liu M; Zhang D; Shen D;
    Neuroinformatics; 2014 Jul; 12(3):381-94. PubMed ID: 24338729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.