BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 35718102)

  • 1. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds.
    Gehlen J; Qiu W; Schädli GN; Müller R; Qin XH
    Acta Biomater; 2023 Jan; 156():49-60. PubMed ID: 35718102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue.
    Byambaa B; Annabi N; Yue K; Trujillo-de Santiago G; Alvarez MM; Jia W; Kazemzadeh-Narbat M; Shin SR; Tamayol A; Khademhosseini A
    Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28524375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration.
    Wang W; Zhu Y; Liu Y; Chen B; Li M; Yuan C; Wang P
    Tissue Cell; 2024 Jun; 88():102418. PubMed ID: 38776731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of vascularized tissue-engineered bone models using triaxial bioprinting.
    Zhang J; Suttapreyasri S; Leethanakul C; Samruajbenjakun B
    J Biomed Mater Res A; 2024 Jul; 112(7):1093-1106. PubMed ID: 38411369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascularized Bone-Mimetic Hydrogel Constructs by 3D Bioprinting to Promote Osteogenesis and Angiogenesis.
    Anada T; Pan CC; Stahl AM; Mori S; Fukuda J; Suzuki O; Yang Y
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs.
    Raveendran N; Ivanovski S; Vaquette C
    Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of osteon-like scaffold-cell construct by quadruple coaxial extrusion-based 3D bioprinting of nanocomposite hydrogel.
    Ghahri T; Salehi Z; Aghajanpour S; Eslaminejad MB; Kalantari N; Akrami M; Dinarvand R; Jang HL; Esfandyari-Manesh M
    Biomater Adv; 2023 Feb; 145():213254. PubMed ID: 36584583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting.
    Chiesa I; De Maria C; Lapomarda A; Fortunato GM; Montemurro F; Di Gesù R; Tuan RS; Vozzi G; Gottardi R
    Biofabrication; 2020 Feb; 12(2):025013. PubMed ID: 31929117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinting EphrinB2-Modified Dental Pulp Stem Cells with Enhanced Osteogenic Capacity for Alveolar Bone Engineering.
    Wang W; Zhu Y; Li J; Geng T; Jia J; Wang X; Yuan C; Wang P
    Tissue Eng Part A; 2023 Apr; 29(7-8):244-255. PubMed ID: 36606680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation.
    Tavares MT; Gaspar VM; Monteiro MV; S Farinha JP; Baleizão C; Mano JF
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33455952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink.
    Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K
    Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.