These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35718218)

  • 1. NMDA Receptor Antagonist MK801 Reduces Dendritic Spine Density and Stability in Zebrafish Pyramidal Neurons.
    Plata ALD; Robles E
    Neuroscience; 2022 Aug; 498():50-63. PubMed ID: 35718218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetic labeling system to study dendritic spine development in zebrafish models of neurodevelopmental disorders.
    DeMarco EC; Stoner GR; Robles E
    Dis Model Mech; 2022 Aug; 15(8):. PubMed ID: 35875841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons.
    Chen LJ; Wang YJ; Chen JR; Tseng GF
    Exp Neurol; 2015 Apr; 266():86-98. PubMed ID: 25708984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density.
    Woolley CS; Weiland NG; McEwen BS; Schwartzkroin PA
    J Neurosci; 1997 Mar; 17(5):1848-59. PubMed ID: 9030643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo.
    Rajan I; Witte S; Cline HT
    J Neurobiol; 1999 Feb; 38(3):357-68. PubMed ID: 10022578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.
    NyĆ­ri G; Stephenson FA; Freund TF; Somogyi P
    Neuroscience; 2003; 119(2):347-63. PubMed ID: 12770551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices.
    Pozzo-Miller LD; Inoue T; Murphy DD
    J Neurophysiol; 1999 Mar; 81(3):1404-11. PubMed ID: 10085365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition.
    Schmidt JT; Buzzard M; Borress R; Dhillon S
    J Neurobiol; 2000 Feb; 42(3):303-14. PubMed ID: 10645970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism.
    Woolley CS; McEwen BS
    J Neurosci; 1994 Dec; 14(12):7680-7. PubMed ID: 7996203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage.
    Stein IS; Gray JA; Zito K
    J Neurosci; 2015 Sep; 35(35):12303-8. PubMed ID: 26338340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of subthreshold membrane potential on synaptic responses at dendritic spines of layer 5 pyramidal neurons in the prefrontal cortex.
    Seong HJ; Behnia R; Carter AG
    J Neurophysiol; 2014 May; 111(10):1960-72. PubMed ID: 24478153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differing mechanisms for glutamate receptor aggregation on dendritic spines and shafts in cultured hippocampal neurons.
    Mi R; Tang X; Sutter R; Xu D; Worley P; O'Brien RJ
    J Neurosci; 2002 Sep; 22(17):7606-16. PubMed ID: 12196584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability.
    Alvarez VA; Ridenour DA; Sabatini BL
    J Neurosci; 2007 Jul; 27(28):7365-76. PubMed ID: 17626197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyramidal Neurons of the Zebrafish Tectum Receive Highly Convergent Input From Torus Longitudinalis.
    DeMarco E; Tesmer AL; Hech B; Kawakami K; Robles E
    Front Neuroanat; 2021; 15():636683. PubMed ID: 33613200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of dendritic spines on hippocampal inhibitory neurons.
    Scheuss V; Bonhoeffer T
    Cereb Cortex; 2014 Dec; 24(12):3142-53. PubMed ID: 23825320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization.
    Shi Y; Ethell IM
    J Neurosci; 2006 Feb; 26(6):1813-22. PubMed ID: 16467530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-D-aspartate receptors.
    Rocha M; Sur M
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):8026-30. PubMed ID: 7644532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection.
    Cline HT; Constantine-Paton M
    J Neurosci; 1990 Apr; 10(4):1197-216. PubMed ID: 2158526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method using ambient glutamate for the electrophysiological quantification of extrasynaptic NMDA receptor function in acute brain slices.
    Moldavski A; Behr J; Bading H; Bengtson CP
    J Physiol; 2020 Feb; 598(4):633-650. PubMed ID: 31876958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.