These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35718542)

  • 21. A CT-Based Radiomics Nomogram Combined with Clinic-Radiological Characteristics for Preoperative Prediction of the Novel IASLC Grading of Invasive Pulmonary Adenocarcinoma.
    Yang Z; Cai Y; Chen Y; Ai Z; Chen F; Wang H; Han Q; Feng Q; Xiang Z
    Acad Radiol; 2023 Sep; 30(9):1946-1961. PubMed ID: 36567145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver.
    Nie P; Yang G; Guo J; Chen J; Li X; Ji Q; Wu J; Cui J; Xu W
    Cancer Imaging; 2020 Feb; 20(1):20. PubMed ID: 32093786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A clinical-radiomics nomogram for the preoperative prediction of lung metastasis in colorectal cancer patients with indeterminate pulmonary nodules.
    Hu T; Wang S; Huang L; Wang J; Shi D; Li Y; Tong T; Peng W
    Eur Radiol; 2019 Jan; 29(1):439-449. PubMed ID: 29948074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computed tomography-based radiomics nomogram for the preoperative prediction of perineural invasion in colorectal cancer: a multicentre study.
    Chen Q; Cui Y; Xue T; Peng H; Li M; Zhu X; Duan S; Gu H; Feng F
    Abdom Radiol (NY); 2022 Sep; 47(9):3251-3263. PubMed ID: 35960308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate prediction of epidermal growth factor receptor mutation status in early-stage lung adenocarcinoma, using radiomics and clinical features.
    Zhu H; Song Y; Huang Z; Zhang L; Chen Y; Tao G; She Y; Sun X; Yu H
    Asia Pac J Clin Oncol; 2022 Dec; 18(6):586-594. PubMed ID: 35098682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preoperative CT Radiomics Nomogram for Predicting Microvascular Invasion in Stage I Non-Small Cell Lung Cancer.
    Deng L; Tang HZ; Luo YW; Feng F; Wu JY; Li Q; Qiang JW
    Acad Radiol; 2024 Jan; 31(1):46-57. PubMed ID: 37331866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computerized tomography-based radiomic model for assessing the invasiveness of lung adenocarcinoma manifesting as ground-glass opacity nodules.
    Zhu M; Yang Z; Wang M; Zhao W; Zhu Q; Shi W; Yu H; Liang Z; Chen L
    Respir Res; 2022 Apr; 23(1):96. PubMed ID: 35429974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A radiomics nomogram for invasiveness prediction in lung adenocarcinoma manifesting as part-solid nodules with solid components smaller than 6 mm.
    Zhang T; Zhang C; Zhong Y; Sun Y; Wang H; Li H; Yang G; Zhu Q; Yuan M
    Front Oncol; 2022; 12():900049. PubMed ID: 36033463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radiomics signature on CECT as a predictive factor for invasiveness of lung adenocarcinoma manifesting as subcentimeter ground glass nodules.
    Chen W; Li M; Mao D; Ge X; Wang J; Tan M; Ma W; Huang X; Lu J; Li C; Hua Y; Wu H
    Sci Rep; 2021 Feb; 11(1):3633. PubMed ID: 33574448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CT texture analysis-based nomogram for the preoperative prediction of visceral pleural invasion in cT1N0M0 lung adenocarcinoma: an external validation cohort study.
    Zuo Z; Li Y; Peng K; Li X; Tan Q; Mo Y; Lan Y; Zeng W; Qi W
    Clin Radiol; 2022 Mar; 77(3):e215-e221. PubMed ID: 34916048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas.
    Feng B; Chen X; Chen Y; Lu S; Liu K; Li K; Liu Z; Hao Y; Li Z; Zhu Z; Yao N; Liang G; Zhang J; Long W; Liu X
    Eur Radiol; 2020 Dec; 30(12):6497-6507. PubMed ID: 32594210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of programmed death-1 expression status in non-small cell lung cancer based on intratumoural and peritumoral computed tomography (CT) radiomics nomogram.
    Tian Q; Jia JY; Qin C; Zhou H; Zhou SY; Qin YH; Wu YY; Shi J; Duan SF; Feng F
    Clin Radiol; 2024 Sep; 79(9):e1089-e1100. PubMed ID: 38876960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pancreatic ductal adenocarcinoma: a radiomics nomogram outperforms clinical model and TNM staging for survival estimation after curative resection.
    Xie T; Wang X; Li M; Tong T; Yu X; Zhou Z
    Eur Radiol; 2020 May; 30(5):2513-2524. PubMed ID: 32006171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and external validation of a radiomics combined with clinical nomogram for preoperative prediction prognosis of resectable pancreatic ductal adenocarcinoma patients.
    Wang F; Zhao Y; Xu J; Shao S; Yu D
    Front Oncol; 2022; 12():1037672. PubMed ID: 36518321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of computed tomography-based radiomics analysis combined with lung cancer serum tumor markers in the identification of lung squamous cell carcinoma and lung adenocarcinoma.
    Zhang T; Li J; Wang G; Li H; Song G; Deng K
    J Cancer Res Ther; 2024 Aug; 20(4):1186-1194. PubMed ID: 39206980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma.
    Lu X; Li M; Zhang H; Hua S; Meng F; Yang H; Li X; Cao D
    Phys Med Biol; 2020 Mar; 65(5):055012. PubMed ID: 31978901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computed-tomography-based radiomic nomogram for predicting the risk of indeterminate small (5-20 mm) solid pulmonary nodules.
    Zhang CR; Wang Q; Feng H; Cui YZ; Yu XB; Shi GF
    Diagn Interv Radiol; 2023 Mar; 29(2):283-290. PubMed ID: 36987938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A radiomics nomogram prediction for survival of patients with "driver gene-negative" lung adenocarcinomas (LUAD).
    Guo QK; Yang HS; Shan SC; Chang DD; Qiu LJ; Luo HH; Li HP; Ke ZF; Zhu Y
    Radiol Med; 2023 Jun; 128(6):714-725. PubMed ID: 37219740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography.
    Ye G; Wu G; Li K; Zhang C; Zhuang Y; Liu H; Song E; Qi Y; Li Y; Yang F; Liao Y
    Acad Radiol; 2024 Apr; 31(4):1686-1697. PubMed ID: 37802672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer.
    Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH
    Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.