These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35719064)

  • 21. Inferring turbulent environments via machine learning.
    Buzzicotti M; Bonaccorso F
    Eur Phys J E Soft Matter; 2022 Dec; 45(12):102. PubMed ID: 36586035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective control of complex turbulent dynamical systems through statistical functionals.
    Majda AJ; Qi D
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5571-5576. PubMed ID: 28507125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving prediction for medical institution with limited patient data: Leveraging hospital-specific data based on multicenter collaborative research network.
    Li J; Tian Y; Li R; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2021 Mar; 113():102024. PubMed ID: 33685587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical deep learning of multiscale differential equation time-steppers.
    Liu Y; Kutz JN; Brunton SL
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210200. PubMed ID: 35719073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems.
    Le HA; Van Chien T; Nguyen TH; Choo H; Nguyen VD
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining data assimilation and machine learning to infer unresolved scale parametrization.
    Brajard J; Carrassi A; Bocquet M; Bertino L
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2194):20200086. PubMed ID: 33583267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine-learning-based data-driven discovery of nonlinear phase-field dynamics.
    Kiyani E; Silber S; Kooshkbaghi M; Karttunen M
    Phys Rev E; 2022 Dec; 106(6-2):065303. PubMed ID: 36671129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extreme learning machine for reduced order modeling of turbulent geophysical flows.
    San O; Maulik R
    Phys Rev E; 2018 Apr; 97(4-1):042322. PubMed ID: 29758628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systems.
    Sapsis TP
    Philos Trans A Math Phys Eng Sci; 2018 Aug; 376(2127):. PubMed ID: 30037931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using Long Short-Term Memory (LSTM) Neural Networks to Predict Emergency Department Wait Time.
    Cheng N; Kuo A
    Stud Health Technol Inform; 2020 Jun; 272():199-202. PubMed ID: 32604635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Invertible generalized synchronization: A putative mechanism for implicit learning in neural systems.
    Lu Z; Bassett DS
    Chaos; 2020 Jun; 30(6):063133. PubMed ID: 32611103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using machine learning to predict statistical properties of non-stationary dynamical processes: System climate,regime transitions, and the effect of stochasticity.
    Patel D; Canaday D; Girvan M; Pomerance A; Ott E
    Chaos; 2021 Mar; 31(3):033149. PubMed ID: 33810745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.
    Karimi D; Samei G; Kesch C; Nir G; Salcudean SE
    Int J Comput Assist Radiol Surg; 2018 Aug; 13(8):1211-1219. PubMed ID: 29766373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applying Machine Learning to Improve Simulations of a Chaotic Dynamical System Using Empirical Error Correction.
    Watson PAG
    J Adv Model Earth Syst; 2019 May; 11(5):1402-1417. PubMed ID: 31341540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A data-driven framework for learning hybrid dynamical systems.
    Li Y; Xu S; Duan J; Huang Y; Liu X
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37347643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lifelong 3D object recognition and grasp synthesis using dual memory recurrent self-organization networks.
    Santhakumar K; Kasaei H
    Neural Netw; 2022 Jun; 150():167-180. PubMed ID: 35313248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.