These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35720528)

  • 1. Identification and Characterization of Regulatory Pathways Controlling Dormancy Under Lower Temperature in Alfalfa (
    Liu J; Wang T; Weng Y; Liu B; Gao Q; Ji W; Wang Z; Wang Y; Ma X
    Front Plant Sci; 2022; 13():872839. PubMed ID: 35720528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of regulatory pathways involved in early flowering in the new leaves of alfalfa (Medicago sativa L.) by transcriptome analysis.
    Ma D; Liu B; Ge L; Weng Y; Cao X; Liu F; Mao P; Ma X
    BMC Plant Biol; 2021 Jan; 21(1):8. PubMed ID: 33407121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How fall dormancy benefits alfalfa winter-survival? Physiologic and transcriptomic analyses of dormancy process.
    Liu ZY; Baoyin T; Li XL; Wang ZL
    BMC Plant Biol; 2019 May; 19(1):205. PubMed ID: 31109303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy.
    Zhang S; Shi Y; Cheng N; Du H; Fan W; Wang C
    PLoS One; 2015; 10(3):e0122170. PubMed ID: 25799491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification and expression analysis of
    Sheng S; Guo X; Wu C; Xiang Y; Duan S; Yang W; Li W; Cao F; Liu L
    Plant Signal Behav; 2022 Dec; 17(1):2081420. PubMed ID: 35642507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Physiological and Transcriptome Analysis Reveal the Molecular Mechanism of Melatonin in Regulating Salt Tolerance in Alfalfa (
    Li S; Wang Y; Gao X; Lan J; Fu B
    Front Plant Sci; 2022; 13():919177. PubMed ID: 35909721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep sequencing of the microRNA expression in fall dormant and non-dormant alfalfa.
    Fan W; Shi P; Wang C
    Genom Data; 2014 Dec; 2():305-7. PubMed ID: 26484115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple Regulatory Networks Are Activated during Cold Stress in
    Zhou Q; Luo D; Chai X; Wu Y; Wang Y; Nan Z; Yang Q; Liu W; Liu Z
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in phenotype and gene expression under lead stress revealed key genetic responses to lead tolerance in Medicago sativa L.
    Wang Y; Meng Y; Mu S; Yan D; Xu X; Zhang L; Xu B
    Gene; 2021 Jul; 791():145714. PubMed ID: 33979680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomic analyses reveal substances that contribute to the increased freezing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit.
    Xu H; Li Z; Tong Z; He F; Li X
    BMC Plant Biol; 2020 Jan; 20(1):15. PubMed ID: 31914920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms.
    Lei Y; Xu Y; Hettenhausen C; Lu C; Shen G; Zhang C; Li J; Song J; Lin H; Wu J
    BMC Plant Biol; 2018 Feb; 18(1):35. PubMed ID: 29448940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of gene expression in fall dormant and nondormant alfalfa.
    Zhang S; Wang C
    Genom Data; 2014 Dec; 2():282-4. PubMed ID: 26484109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress.
    Song L; Jiang L; Chen Y; Shu Y; Bai Y; Guo C
    Funct Integr Genomics; 2016 Sep; 16(5):495-511. PubMed ID: 27272950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pan-Transcriptome Analysis Indicates Efficient Downregulation of the FIB Genes Plays a Critical Role in the Response of Alfalfa to Cold Stress.
    Zhang X; Yang H; Li M; Bai Y; Chen C; Guo D; Guo C; Shu Y
    Plants (Basel); 2022 Nov; 11(22):. PubMed ID: 36432878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and Proteomic Responses of Contrasting Alfalfa (
    Li Y; Li X; Zhang J; Li D; Yan L; You M; Zhang J; Lei X; Chang D; Ji X; An J; Li M; Bai S; Yan J
    Front Plant Sci; 2021; 12():753011. PubMed ID: 34956258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (
    Zeng N; Yang Z; Zhang Z; Hu L; Chen L
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30889856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa.
    Gao R; Austin RS; Amyot L; Hannoufa A
    BMC Genomics; 2016 Aug; 17(1):658. PubMed ID: 27542359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification of the MADS-box transcription factor family in autotetraploid cultivated alfalfa (Medicago sativa L.) and expression analysis under abiotic stress.
    Dong X; Deng H; Ma W; Zhou Q; Liu Z
    BMC Genomics; 2021 Aug; 22(1):603. PubMed ID: 34362293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative time-course transcriptome analysis of two contrasting alfalfa (
    Ma D; Cai J; Ma Q; Wang W; Zhao L; Li J; Su L
    Front Plant Sci; 2022; 13():1070846. PubMed ID: 36570949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of
    Cen H; Wang T; Liu H; Wang H; Tian D; Li X; Cui X; Guan C; Zang H; Li M; Zhang Y
    Front Plant Sci; 2020; 11():489. PubMed ID: 32411162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.