These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35720775)

  • 1. Exploring Parameter and Hyper-Parameter Spaces of Neuroscience Models on High Performance Computers With Learning to Learn.
    Yegenoglu A; Subramoney A; Hater T; Jimenez-Romero C; Klijn W; Pérez Martín A; van der Vlag M; Herty M; Morrison A; Diaz-Pier S
    Front Comput Neurosci; 2022; 16():885207. PubMed ID: 35720775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Few-Shot Learning in Spiking Neural Networks by Multi-Timescale Optimization.
    Jiang R; Zhang J; Yan R; Tang H
    Neural Comput; 2021 Aug; 33(9):2439-2472. PubMed ID: 34280263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications.
    D'Angelo G; Rampone S
    BMC Bioinformatics; 2014; 15 Suppl 5(Suppl 5):S2. PubMed ID: 25077818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks.
    Schmidgall S; Hays J
    Front Neurosci; 2023; 17():1183321. PubMed ID: 37250397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Closed-Loop Toolchain for Neural Network Simulations of Learning Autonomous Agents.
    Jordan J; Weidel P; Morrison A
    Front Comput Neurosci; 2019; 13():46. PubMed ID: 31427939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.
    Feldotto B; Eppler JM; Jimenez-Romero C; Bignamini C; Gutierrez CE; Albanese U; Retamino E; Vorobev V; Zolfaghari V; Upton A; Sun Z; Yamaura H; Heidarinejad M; Klijn W; Morrison A; Cruz F; McMurtrie C; Knoll AC; Igarashi J; Yamazaki T; Doya K; Morin FO
    Front Neuroinform; 2022; 16():884180. PubMed ID: 35662903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive Visualization and Steering of Connectivity Generation.
    Nowke C; Diaz-Pier S; Weyers B; Hentschel B; Morrison A; Kuhlen TW; Peyser A
    Front Neuroinform; 2018; 12():32. PubMed ID: 29937723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RateML: A Code Generation Tool for Brain Network Models.
    van der Vlag M; Woodman M; Fousek J; Diaz-Pier S; Pérez Martín A; Jirsa V; Morrison A
    Front Netw Physiol; 2022; 2():826345. PubMed ID: 36926112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations.
    Albers J; Pronold J; Kurth AC; Vennemo SB; Haghighi Mood K; Patronis A; Terhorst D; Jordan J; Kunkel S; Tetzlaff T; Diesmann M; Senk J
    Front Neuroinform; 2022; 16():837549. PubMed ID: 35645755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolving interpretable plasticity for spiking networks.
    Jordan J; Schmidt M; Senn W; Petrovici MA
    Elife; 2021 Oct; 10():. PubMed ID: 34709176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pypet: A Python Toolkit for Data Management of Parameter Explorations.
    Meyer R; Obermayer K
    Front Neuroinform; 2016; 10():38. PubMed ID: 27610080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Reinforcement Learning Approach for Spark Configuration Parameter Optimization.
    Huang X; Zhang H; Zhai X
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MLAGO: machine learning-aided global optimization for Michaelis constant estimation of kinetic modeling.
    Maeda K; Hatae A; Sakai Y; Boogerd FC; Kurata H
    BMC Bioinformatics; 2022 Nov; 23(1):455. PubMed ID: 36319952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sepsis reconsidered: Identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model.
    Cockrell C; An G
    J Theor Biol; 2017 Oct; 430():157-168. PubMed ID: 28728997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classifying dynamic transitions in high dimensional neural mass models: A random forest approach.
    Ferrat LA; Goodfellow M; Terry JR
    PLoS Comput Biol; 2018 Mar; 14(3):e1006009. PubMed ID: 29499044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JAX-ReaxFF: A Gradient-Based Framework for Fast Optimization of Reactive Force Fields.
    Kaymak MC; Rahnamoun A; O'Hearn KA; van Duin ACT; Merz KM; Aktulga HM
    J Chem Theory Comput; 2022 Sep; 18(9):5181-5194. PubMed ID: 35978524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. oFVSD: a Python package of optimized forward variable selection decoder for high-dimensional neuroimaging data.
    Dang T; Fermin ASR; Machizawa MG
    Front Neuroinform; 2023; 17():1266713. PubMed ID: 37829329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.