These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 35720939)
1. A Complete Process of Text Classification System Using State-of-the-Art NLP Models. Dogra V; Verma S; Kavita ; Chatterjee P; Shafi J; Choi J; Ijaz MF Comput Intell Neurosci; 2022; 2022():1883698. PubMed ID: 35720939 [TBL] [Abstract][Full Text] [Related]
2. Unsupervised and self-supervised deep learning approaches for biomedical text mining. Nadif M; Role F Brief Bioinform; 2021 Mar; 22(2):1592-1603. PubMed ID: 33569575 [TBL] [Abstract][Full Text] [Related]
3. A clinical text classification paradigm using weak supervision and deep representation. Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584 [TBL] [Abstract][Full Text] [Related]
4. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches. Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392 [TBL] [Abstract][Full Text] [Related]
5. PDF text classification to leverage information extraction from publication reports. Bui DD; Del Fiol G; Jonnalagadda S J Biomed Inform; 2016 Jun; 61():141-8. PubMed ID: 27044929 [TBL] [Abstract][Full Text] [Related]
6. Natural Language Processing in Dutch Free Text Radiology Reports: Challenges in a Small Language Area Staging Pulmonary Oncology. Nobel JM; Puts S; Bakers FCH; Robben SGF; Dekker ALAJ J Digit Imaging; 2020 Aug; 33(4):1002-1008. PubMed ID: 32076924 [TBL] [Abstract][Full Text] [Related]
7. Self-Attention-Based Models for the Extraction of Molecular Interactions from Biological Texts. Srivastava P; Bej S; Yordanova K; Wolkenhauer O Biomolecules; 2021 Oct; 11(11):. PubMed ID: 34827589 [TBL] [Abstract][Full Text] [Related]
8. Development and evaluation of task-specific NLP framework in China. Ge C; Zhang Y; Huang Z; Jia Z; Ju M; Duan H; Li H Stud Health Technol Inform; 2015; 216():1031. PubMed ID: 26262331 [TBL] [Abstract][Full Text] [Related]
9. Large scale biomedical texts classification: a kNN and an ESA-based approaches. Dramé K; Mougin F; Diallo G J Biomed Semantics; 2016 Jun; 7():40. PubMed ID: 27312781 [TBL] [Abstract][Full Text] [Related]
10. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification. Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729 [TBL] [Abstract][Full Text] [Related]
11. Combining unsupervised, supervised and rule-based learning: the case of detecting patient allergies in electronic health records. Berge GT; Granmo OC; Tveit TO; Ruthjersen AL; Sharma J BMC Med Inform Decis Mak; 2023 Sep; 23(1):188. PubMed ID: 37723446 [TBL] [Abstract][Full Text] [Related]
12. Predicting occupational injury causal factors using text-based analytics: A systematic review. Khairuddin MZF; Hasikin K; Abd Razak NA; Lai KW; Osman MZ; Aslan MF; Sabanci K; Azizan MM; Satapathy SC; Wu X Front Public Health; 2022; 10():984099. PubMed ID: 36187621 [TBL] [Abstract][Full Text] [Related]
13. Realizing the Power of Text Mining and Natural Language Processing for Analyzing Patient Safety Event Narratives: The Challenges and Path Forward. Fong A J Patient Saf; 2021 Dec; 17(8):e834-e836. PubMed ID: 34852413 [TBL] [Abstract][Full Text] [Related]
15. Social media mining for birth defects research: A rule-based, bootstrapping approach to collecting data for rare health-related events on Twitter. Klein AZ; Sarker A; Cai H; Weissenbacher D; Gonzalez-Hernandez G J Biomed Inform; 2018 Nov; 87():68-78. PubMed ID: 30292855 [TBL] [Abstract][Full Text] [Related]
16. Deep contextualized embeddings for quantifying the informative content in biomedical text summarization. Moradi M; Dorffner G; Samwald M Comput Methods Programs Biomed; 2020 Feb; 184():105117. PubMed ID: 31627150 [TBL] [Abstract][Full Text] [Related]
17. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Sarker A; Gonzalez G J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103 [TBL] [Abstract][Full Text] [Related]
18. Text Mining and Machine Learning Protocol for Extracting Human-Related Protein Phosphorylation Information from PubMed. Arumugam K; Shanker RR Methods Mol Biol; 2022; 2496():159-177. PubMed ID: 35713864 [TBL] [Abstract][Full Text] [Related]
19. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
20. ML-Net: multi-label classification of biomedical texts with deep neural networks. Du J; Chen Q; Peng Y; Xiang Y; Tao C; Lu Z J Am Med Inform Assoc; 2019 Nov; 26(11):1279-1285. PubMed ID: 31233120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]