These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35721863)

  • 1. Mechanical Distribution and New Bone Regeneration After Implanting 3D Printed Prostheses for Repairing Metaphyseal Bone Defects: A Finite Element Analysis and Prospective Clinical Study.
    Liu B; Li X; Qiu W; Liu Z; Zhou F; Zheng Y; Wen P; Tian Y
    Front Bioeng Biotechnol; 2022; 10():921545. PubMed ID: 35721863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of different fixation modes on biomechanical conduction of 3D printed prostheses for treating critical diaphyseal defects of lower limbs: A finite element study.
    Liu B; Lv Y; Li X; Liu Z; Zheng Y; Wen P; Liu N; Huo Y; Zhou F; Tian Y
    Front Surg; 2022; 9():959306. PubMed ID: 36090321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying 3D-Printed Porous Ti6Al4V Prostheses to Repair Osteomyelitis-Induced Partial Bone Defects of Lower Limbs: Finite Element Analysis and Clinical Outcomes.
    Liu B; Tan Q; Wang Z; Hou G; Wang C; Tian Y
    Orthop Surg; 2024 Oct; ():. PubMed ID: 39429061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biomechanical comparison between cement packing combined with extra fixation and three-dimensional printed strut-type prosthetic reconstruction for giant cell tumor of bone in distal femur.
    Hu X; Lu M; Zhang Y; Wang Y; Min L; Tu C
    J Orthop Surg Res; 2022 Mar; 17(1):151. PubMed ID: 35264178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temperature oxidation treated 3D printed anatomical WE43 alloy scaffolds for repairing periarticular bone defects:
    Liu B; Liu J; Wang C; Wang Z; Min S; Wang C; Zheng Y; Wen P; Tian Y
    Bioact Mater; 2024 Feb; 32():177-189. PubMed ID: 37859690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel application of 3D printed microporous prosthesis to repair humeral nonunion with segmental bone defects: a case report.
    Qiu W; Liu B; Li X; Tian Y
    Ann Transl Med; 2022 Aug; 10(15):840. PubMed ID: 36034998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed porous condylar prosthesis for temporomandibular joint replacement: Design and biomechanical analysis.
    Cheng KJ; Liu YF; Wang JH; Wang R; Xia J; Xu X; Jiang XF; Dong XT
    Technol Health Care; 2022; 30(4):1017-1030. PubMed ID: 35275582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of distal fibular and lateral malleolus defects with individualized 3D-printed titanium alloy prosthesis: The first case report from China.
    Cheng J; Gao Y; Long Z; Pei G; Li Z; Meng G
    Int J Surg Case Rep; 2022 May; 94():107057. PubMed ID: 35461180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and validation of a novel 3D-printed glenohumeral fusion prosthesis for the reconstruction of proximal humerus bone defects: a biomechanical study.
    Lin J; Song G; Huang A; Hu J; Tang Q; Lu J; Huang Y; Gong M; Zhu X; Wang J
    Front Bioeng Biotechnol; 2024; 12():1428446. PubMed ID: 39040498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical evaluation of a customized 3D-printed polyetheretherketone condylar prosthesis.
    Guo F; Huang S; Hu M; Yang C; Li D; Liu C
    Exp Ther Med; 2021 Apr; 21(4):348. PubMed ID: 33732321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of artificial pedicle fixation in a 3D-printed prosthesis after total en bloc spondylectomy: a finite element analysis.
    Wang X; Xu H; Han Y; Wu J; Song Y; Jiang Y; Wang J; Miao J
    J Orthop Surg Res; 2021 Mar; 16(1):213. PubMed ID: 33761991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An innovative strategy to treat large metaphyseal segmental femoral bone defect using customized design and 3D printed micro-porous prosthesis: a prospective clinical study.
    Hou G; Liu B; Tian Y; Liu Z; Zhou F; Ji H; Zhang Z; Guo Y; Lv Y; Yang Z; Wen P; Zheng Y; Cheng Y
    J Mater Sci Mater Med; 2020 Jul; 31(8):66. PubMed ID: 32696168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A preliminary study of three-dimensional printed porous titanium plate integrated implant for the repair of comminuted acetabular posterior wall fracture with bone defect].
    Zhang YC; Li JJ; Hou WT; Zhang HF; Liu JH
    Zhongguo Gu Shang; 2019 May; 32(5):469-474. PubMed ID: 31248245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical study of 3D printed personalized prosthesis in the treatment of bone defect after pelvic tumor resection.
    Xu L; Qin H; Tan J; Cheng Z; Luo X; Tan H; Huang W
    J Orthop Translat; 2021 Jul; 29():163-169. PubMed ID: 34277347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of custom 3D-printed prostheses with ultra-short stems in the reconstruction of bone defects: a single center analysis.
    Zhang P; Tian W; Li P; Zhang F; Qu G; Du X; Liu G; Niu X
    Front Bioeng Biotechnol; 2024; 12():1349819. PubMed ID: 38333079
    [No Abstract]   [Full Text] [Related]  

  • 17. Novel axial compressive endoprosthesis ACE can enhance metaphyseal fixation and facilitate osseointegration: A biomechanical study.
    Huang S; Ji T; Tang X; Guo W
    Front Bioeng Biotechnol; 2022; 10():1004849. PubMed ID: 36532574
    [No Abstract]   [Full Text] [Related]  

  • 18. Design of 3D-printed prostheses for reconstruction of periacetabular bone tumors using topology optimization.
    Zhu J; Hu J; Zhu K; Ma X; Wang Y; Xu E; Huang Z; Zhu Y; Zhang C
    Front Bioeng Biotechnol; 2023; 11():1289363. PubMed ID: 38116196
    [No Abstract]   [Full Text] [Related]  

  • 19. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model.
    Lee SH; Lee KG; Hwang JH; Cho YS; Lee KS; Jeong HJ; Park SH; Park Y; Cho YS; Lee BK
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():949-959. PubMed ID: 30813102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical Evaluation and the Assisted 3D Printed Model in the Patient-Specific Preoperative Planning for Thoracic Spinal Tuberculosis: A Finite Element Analysis.
    Wang B; Ke W; Hua W; Zeng X; Yang C
    Front Bioeng Biotechnol; 2020; 8():807. PubMed ID: 32766226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.