BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35721944)

  • 1. Electrospun Carbon Nanotube-Based Scaffolds Exhibit High Conductivity and Cytocompatibility for Tissue Engineering Applications.
    Suh TC; Twiddy J; Mahmood N; Ali KM; Lubna MM; Bradford PD; Daniele MA; Gluck JM
    ACS Omega; 2022 Jun; 7(23):20006-20019. PubMed ID: 35721944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2627-2637. PubMed ID: 33821604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering.
    Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
    Kharaziha M; Shin SR; Nikkhah M; Topkaya SN; Masoumi N; Annabi N; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7346-54. PubMed ID: 24927679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering.
    Shokraei N; Asadpour S; Shokraei S; Nasrollahzadeh Sabet M; Faridi-Majidi R; Ghanbari H
    Microsc Res Tech; 2019 Aug; 82(8):1316-1325. PubMed ID: 31062449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering.
    Dominguez-Alfaro A; Alegret N; Arnaiz B; González-Domínguez JM; Martin-Pacheco A; Cossío U; Porcarelli L; Bosi S; Vázquez E; Mecerreyes D; Prato M
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1269-1278. PubMed ID: 33464834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube nanocomposite scaffolds: advances in fabrication and applications for tissue regeneration and cancer therapy.
    Shar A; Shar A; Joung D
    Front Bioeng Biotechnol; 2023; 11():1299166. PubMed ID: 38179128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization.
    Liu X; George MN; Park S; Miller Ii AL; Gaihre B; Li L; Waletzki BE; Terzic A; Yaszemski MJ; Lu L
    Acta Biomater; 2020 Jul; 111():129-140. PubMed ID: 32428680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
    Ahadian S; Yamada S; Ramón-Azcón J; Estili M; Liang X; Nakajima K; Shiku H; Khademhosseini A; Matsue T
    Acta Biomater; 2016 Feb; 31():134-143. PubMed ID: 26621696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
    Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME
    Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds.
    Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L
    Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An
    Amirabdollahian A; Moeini M
    Tissue Eng Part A; 2024 Apr; ():. PubMed ID: 38445375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-walled carbon nanotube carpets as scaffolds for U87MG glioblastoma multiforme cell growth.
    Parikh SD; Dave S; Huang L; Wang W; Mukhopadhyay SM; Mayes DA
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110345. PubMed ID: 31924041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
    Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the cytocompatibility of tridimensional carbon nanotube-based scaffolds.
    Nardecchia S; Serrano MC; Gutiérrez MC; Ferrer ML; Monte FD
    J Mater Chem B; 2013 Jun; 1(24):3064-3072. PubMed ID: 32261010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.
    Liu Y; Lu J; Xu G; Wei J; Zhang Z; Li X
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():865-74. PubMed ID: 27612781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties.
    Hossain MM; Islam MA; Shima H; Hasan M; Lee M
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5530-5542. PubMed ID: 28106367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun protein-CNT composite fibers and the application in fibroblast stimulation.
    Chi N; Wang R
    Biochem Biophys Res Commun; 2018 Sep; 504(1):211-217. PubMed ID: 30172370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.