These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35722059)

  • 1. Next Generation Risk Assessment of the Anti-Androgen Flutamide Including the Contribution of Its Active Metabolite Hydroxyflutamide.
    van Tongeren TCA; Carmichael PL; Rietjens IMCM; Li H
    Front Toxicol; 2022; 4():881235. PubMed ID: 35722059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next generation risk assessment for occupational chemical safety - A real world example with sodium-2-hydroxyethane sulfonate.
    Wood A; Breffa C; Chaine C; Cubberley R; Dent M; Eichhorn J; Fayyaz S; Grimm FA; Houghton J; Kiwamoto R; Kukic P; Lee M; Malcomber S; Martin S; Nicol B; Reynolds J; Riley G; Scott S; Smith C; Westmoreland C; Wieland W; Williams M; Wolton K; Zellmann T; Gutsell S
    Toxicology; 2024 Aug; 506():153835. PubMed ID: 38857863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next generation risk assessment of human exposure to anti-androgens using newly defined comparator compound values.
    van Tongeren TCA; Moxon TE; Dent MP; Li H; Carmichael PL; Rietjens IMCM
    Toxicol In Vitro; 2021 Jun; 73():105132. PubMed ID: 33662517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiologically based kinetic modelling based prediction of in vivo rat and human acetylcholinesterase (AChE) inhibition upon exposure to diazinon.
    Zhao S; Wesseling S; Spenkelink B; Rietjens IMCM
    Arch Toxicol; 2021 May; 95(5):1573-1593. PubMed ID: 33715020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholinesterase Inhibition in Rats and Humans Following Acute Fenitrothion Exposure Predicted by Physiologically Based Kinetic Modeling-Facilitated Quantitative
    Chen J; Zhao S; Wesseling S; Kramer NI; Rietjens IMCM; Bouwmeester H
    Environ Sci Technol; 2023 Dec; 57(49):20521-20531. PubMed ID: 38008925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment.
    Reale E; Zare Jeddi M; Paini A; Connolly A; Duca R; Cubadda F; Benfenati E; Bessems J; S Galea K; Dirven H; Santonen T; M Koch H; Jones K; Sams C; Viegas S; Kyriaki M; Campisi L; David A; Antignac JP; B Hopf N
    Environ Int; 2024 Feb; 184():108474. PubMed ID: 38350256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products.
    Moxon TE; Li H; Lee MY; Piechota P; Nicol B; Pickles J; Pendlington R; Sorrell I; Baltazar MT
    Toxicol In Vitro; 2020 Mar; 63():104746. PubMed ID: 31837441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic evaluation of high-throughput PBK modelling strategies for the prediction of intravenous and oral pharmacokinetics in humans.
    Geci R; Gadaleta D; de Lomana MG; Ortega-Vallbona R; Colombo E; Serrano-Candelas E; Paini A; Kuepfer L; Schaller S
    Arch Toxicol; 2024 May; ():. PubMed ID: 38722347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating in vitro chemical transplacental passage into a generic PBK model: A QIVIVE approach.
    Fragki S; Hoogenveen R; van Oostrom C; Schwillens P; Piersma AH; Zeilmaker MJ
    Toxicology; 2022 Jan; 465():153060. PubMed ID: 34871708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next generation risk assessment (NGRA): Bridging in vitro points-of-departure to human safety assessment using physiologically-based kinetic (PBK) modelling - A case study of doxorubicin with dose metrics considerations.
    Li H; Yuan H; Middleton A; Li J; Nicol B; Carmichael P; Guo J; Peng S; Zhang Q
    Toxicol In Vitro; 2021 Aug; 74():105171. PubMed ID: 33848589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards best use and regulatory acceptance of generic physiologically based kinetic (PBK) models for in vitro-to-in vivo extrapolation (IVIVE) in chemical risk assessment.
    Najjar A; Punt A; Wambaugh J; Paini A; Ellison C; Fragki S; Bianchi E; Zhang F; Westerhout J; Mueller D; Li H; Shi Q; Gant TW; Botham P; Bars R; Piersma A; van Ravenzwaay B; Kramer NI
    Arch Toxicol; 2022 Dec; 96(12):3407-3419. PubMed ID: 36063173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment.
    Alexander-White C; Bury D; Cronin M; Dent M; Hack E; Hewitt NJ; Kenna G; Naciff J; Ouedraogo G; Schepky A; Mahony C; Europe C
    Regul Toxicol Pharmacol; 2022 Mar; 129():105094. PubMed ID: 34990780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next generation risk assessment: an
    Ebmeyer J; Najjar A; Lange D; Boettcher M; Voß S; Brandmair K; Meinhardt J; Kuehnl J; Hewitt NJ; Krueger CT; Schepky A
    Front Pharmacol; 2024; 15():1345992. PubMed ID: 38515841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining in vitro embryotoxicity data with physiologically based kinetic (PBK) modelling to define in vivo dose-response curves for developmental toxicity of phenol in rat and human.
    Strikwold M; Spenkelink B; Woutersen RA; Rietjens IM; Punt A
    Arch Toxicol; 2013 Sep; 87(9):1709-23. PubMed ID: 23943240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of quantitative
    Moreau M; Simms L; Andersen ME; Trelles Sticken E; Wieczorek R; Pour SJ; Chapman F; Roewer K; Otte S; Fisher J; Stevenson M
    Front Toxicol; 2024; 6():1373325. PubMed ID: 38665213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative
    Scholze M; Taxvig C; Kortenkamp A; Boberg J; Christiansen S; Svingen T; Lauschke K; Frandsen H; Ermler S; Hermann SS; Pedersen M; Lykkeberg AK; Axelstad M; Vinggaard AM
    Environ Health Perspect; 2020 Nov; 128(11):117005. PubMed ID: 33236927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach methodology (NAM) for the prediction of (nor)ibogaine-induced cardiotoxicity in humans.
    Shi M; Wesseling S; Bouwmeester H; Rietjens IMCM
    ALTEX; 2021; 38(4):636-652. PubMed ID: 34271588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating
    Chen J; Noorlander A; Wesseling S; Bouwmeester H; Kramer NI; Rietjens IMCM
    Environ Sci Technol; 2023 Aug; 57(30):10974-10984. PubMed ID: 37478462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting points of departure for risk assessment based on in vitro cytotoxicity data and physiologically based kinetic (PBK) modeling: The case of kidney toxicity induced by aristolochic acid I.
    Abdullah R; Alhusainy W; Woutersen J; Rietjens IM; Punt A
    Food Chem Toxicol; 2016 Jun; 92():104-16. PubMed ID: 27016491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next generation risk assessment of human exposure to estrogens using safe comparator compound values based on in vitro bioactivity assays.
    van Tongeren TCA; Wang S; Carmichael PL; Rietjens IMCM; Li H
    Arch Toxicol; 2023 Jun; 97(6):1547-1575. PubMed ID: 37087486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.