These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35722206)

  • 1. Sufficient principal component regression for pattern discovery in transcriptomic data.
    Ding L; Zentner GE; McDonald DJ
    Bioinform Adv; 2022; 2(1):vbac033. PubMed ID: 35722206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering a sparse set of pairwise discriminating features in high-dimensional data.
    Melton S; Ramanathan S
    Bioinformatics; 2021 Apr; 37(2):202-212. PubMed ID: 32730566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying stability selection to consistently estimate sparse principal components in high-dimensional molecular data.
    Sill M; Saadati M; Benner A
    Bioinformatics; 2015 Aug; 31(16):2683-90. PubMed ID: 25861969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression.
    Ding L; McDonald DJ
    Bioinformatics; 2017 Jul; 33(14):i350-i358. PubMed ID: 28881997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data.
    Bastien P; Bertrand F; Meyer N; Maumy-Bertrand M
    Bioinformatics; 2015 Feb; 31(3):397-404. PubMed ID: 25286920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data.
    St-Pierre J; Oualkacha K; Bhatnagar SR
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36708013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying heterogeneity of expression data based on principal components.
    Yang Z; Michailidis G
    Bioinformatics; 2019 Feb; 35(4):553-559. PubMed ID: 30060088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying interactions in omics data for clinical biomarker discovery using symbolic regression.
    Christensen NJ; Demharter S; Machado M; Pedersen L; Salvatore M; Stentoft-Hansen V; Iglesias MT
    Bioinformatics; 2022 Aug; 38(15):3749-3758. PubMed ID: 35731214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving deep learning-based protein distance prediction in CASP14.
    Guo Z; Wu T; Liu J; Hou J; Cheng J
    Bioinformatics; 2021 Oct; 37(19):3190-3196. PubMed ID: 33961009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential transcript usage analysis of bulk and single-cell RNA-seq data with DTUrtle.
    Tekath T; Dugas M
    Bioinformatics; 2021 Nov; 37(21):3781-3787. PubMed ID: 34469510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal regularized linear models with flux balance analysis for mechanistic integration of omics data.
    Magazzù G; Zampieri G; Angione C
    Bioinformatics; 2021 Oct; 37(20):3546-3552. PubMed ID: 33974036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MorphOT: transport-based interpolation between EM maps with UCSF ChimeraX.
    Ecoffet A; Poitevin F; Dao Duc K
    Bioinformatics; 2021 Apr; 36(22-23):5528-5529. PubMed ID: 33325492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FEATS: feature selection-based clustering of single-cell RNA-seq data.
    Vans E; Patil A; Sharma A
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33285568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MSPypeline: a python package for streamlined data analysis of mass spectrometry-based proteomics.
    Heming S; Hansen P; Vlasov A; Schwörer F; Schaumann S; Frolovaitė P; Lehmann WD; Timmer J; Schilling M; Helm B; Klingmüller U
    Bioinform Adv; 2022; 2(1):vbac004. PubMed ID: 36699356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overcoming the inadaptability of sparse group lasso for data with various group structures by stacking.
    He H; Guo X; Yu J; Ai C; Shi S
    Bioinformatics; 2022 Mar; 38(6):1542-1549. PubMed ID: 34908103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring high-dimensional biological data with sparse contrastive principal component analysis.
    Boileau P; Hejazi NS; Dudoit S
    Bioinformatics; 2020 Jun; 36(11):3422-3430. PubMed ID: 32176249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scMoC: single-cell multi-omics clustering.
    Eltager M; Abdelaal T; Mahfouz A; Reinders MJT
    Bioinform Adv; 2022; 2(1):vbac011. PubMed ID: 36699396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.