These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35723020)

  • 21. RNA polymerase II clusters form in line with surface condensation on regulatory chromatin.
    Pancholi A; Klingberg T; Zhang W; Prizak R; Mamontova I; Noa A; Sobucki M; Kobitski AY; Nienhaus GU; Zaburdaev V; Hilbert L
    Mol Syst Biol; 2021 Sep; 17(9):e10272. PubMed ID: 34569155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of RNA Polymerase II Clustering inside Live-Cell Nuclei Using Bayesian Nanoscopy.
    Chen X; Wei M; Zheng MM; Zhao J; Hao H; Chang L; Xi P; Sun Y
    ACS Nano; 2016 Feb; 10(2):2447-54. PubMed ID: 26855123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The heat shock response: A case study of chromatin dynamics in gene regulation.
    Teves SS; Henikoff S
    Biochem Cell Biol; 2013 Feb; 91(1):42-8. PubMed ID: 23442140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Trypanosoma brucei RNA-Binding Protein TbRRM1 is Involved in the Transcription of a Subset of RNA Pol II-Dependent Genes.
    Bañuelos CP; Levy GV; Níttolo AG; Roser LG; Tekiel V; Sánchez DO
    J Eukaryot Microbiol; 2019 Sep; 66(5):719-729. PubMed ID: 30730083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors.
    Wang H; Li B; Zuo L; Wang B; Yan Y; Tian K; Zhou R; Wang C; Chen X; Jiang Y; Zheng H; Qin F; Zhang B; Yu Y; Liu CP; Xu Y; Gao J; Qi Z; Deng W; Ji X
    Nat Commun; 2022 Sep; 13(1):5703. PubMed ID: 36171202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II.
    Schwabish MA; Struhl K
    Mol Cell Biol; 2004 Dec; 24(23):10111-7. PubMed ID: 15542822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II.
    Steurer B; Janssens RC; Geverts B; Geijer ME; Wienholz F; Theil AF; Chang J; Dealy S; Pothof J; van Cappellen WA; Houtsmuller AB; Marteijn JA
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4368-E4376. PubMed ID: 29632207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition.
    Muniz L; Nicolas E; Trouche D
    EMBO J; 2021 Aug; 40(15):e105740. PubMed ID: 34254686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization.
    Pascali C; Teichmann M
    Subcell Biochem; 2013; 61():261-87. PubMed ID: 23150255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection.
    Birkenheuer CH; Danko CG; Baines JD
    J Virol; 2018 Apr; 92(8):. PubMed ID: 29437966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Biology of RNA Polymerase II Transcription: 20 Years On.
    Osman S; Cramer P
    Annu Rev Cell Dev Biol; 2020 Oct; 36():1-34. PubMed ID: 32822539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic organization of transcription compartments is dependent on functional nuclear architecture.
    Maharana S; Sharma D; Shi X; Shivashankar GV
    Biophys J; 2012 Sep; 103(5):851-9. PubMed ID: 23009834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark.
    Donze D
    Gene; 2012 Feb; 493(2):169-75. PubMed ID: 21986035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons.
    Jonkers I; Kwak H; Lis JT
    Elife; 2014 Apr; 3():e02407. PubMed ID: 24843027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure.
    Merkl PE; Pilsl M; Fremter T; Schwank K; Engel C; Längst G; Milkereit P; Griesenbeck J; Tschochner H
    J Biol Chem; 2020 Apr; 295(15):4782-4795. PubMed ID: 32060094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin of RNA Polymerase II pause in eumetazoans: Insights from
    Reddy PC; Pradhan SJ; Karmodiya K; Galande S
    J Biosci; 2020; 45():. PubMed ID: 31965986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TbISWI regulates multiple polymerase I (Pol I)-transcribed loci and is present at Pol II transcription boundaries in Trypanosoma brucei.
    Stanne TM; Kushwaha M; Wand M; Taylor JE; Rudenko G
    Eukaryot Cell; 2011 Jul; 10(7):964-76. PubMed ID: 21571922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heparanase mediates vascular endothelial growth factor gene transcription in high-glucose human retinal microvascular endothelial cells.
    Hu J; Wang J; Leng X; Hu Y; Shen H; Song X
    Mol Vis; 2017; 23():579-587. PubMed ID: 28848320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Werner syndrome protein is involved in RNA polymerase II transcription.
    Balajee AS; Machwe A; May A; Gray MD; Oshima J; Martin GM; Nehlin JO; Brosh R; Orren DK; Bohr VA
    Mol Biol Cell; 1999 Aug; 10(8):2655-68. PubMed ID: 10436020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of the nuclear walk-on methodology to determine sites of RNA polymerase II initiation and pausing and quantify nascent RNAs in cells.
    Ball CB; Nilson KA; Price DH
    Methods; 2019 Apr; 159-160():165-176. PubMed ID: 30743000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.