BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 35724322)

  • 1. Hearing without a tympanic ear.
    Capshaw G; Christensen-Dalsgaard J; Carr CE
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35724322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone conduction pathways confer directional cues to salamanders.
    Capshaw G; Christensen-Dalsgaard J; Soares D; Carr CE
    J Exp Biol; 2021 Oct; 224(20):. PubMed ID: 34581406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seismic sensitivity and bone conduction mechanisms enable extratympanic hearing in salamanders.
    Capshaw G; Soares D; Christensen-Dalsgaard J; Carr CE
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33161383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of a sensory novelty: tympanic ears and the associated neural processing.
    Christensen-Dalsgaard J; Carr CE
    Brain Res Bull; 2008 Mar; 75(2-4):365-70. PubMed ID: 18331899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive high-frequency hearing in earless and partially eared harlequin frogs (
    Womack MC; Christensen-Dalsgaard J; Coloma LA; Hoke KL
    J Exp Biol; 2018 May; 221(Pt 10):. PubMed ID: 29674377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Earless toads sense low frequencies but miss the high notes.
    Womack MC; Christensen-Dalsgaard J; Coloma LA; Chaparro JC; Hoke KL
    Proc Biol Sci; 2017 Oct; 284(1864):. PubMed ID: 28978737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
    Zeyl JN; den Ouden O; Köppl C; Assink J; Christensen-Dalsgaard J; Patrick SC; Clusella-Trullas S
    Biol Rev Camb Philos Soc; 2020 Aug; 95(4):1036-1054. PubMed ID: 32237036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tympanic and extratympanic sound transmission in the leopard frog.
    Wilczynski W; Resler C; Capranica RR
    J Comp Physiol A; 1987 Oct; 161(5):659-69. PubMed ID: 3500304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.
    Christensen CB; Christensen-Dalsgaard J; Madsen PT
    J Exp Biol; 2015 Feb; 218(Pt 3):381-7. PubMed ID: 25653420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Better than fish on land? Hearing across metamorphosis in salamanders.
    Christensen CB; Lauridsen H; Christensen-Dalsgaard J; Pedersen M; Madsen PT
    Proc Biol Sci; 2015 Mar; 282(1802):. PubMed ID: 25652830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Better late than never: effective air-borne hearing of toads delayed by late maturation of the tympanic middle ear structures.
    Womack MC; Christensen-Dalsgaard J; Hoke KL
    J Exp Biol; 2016 Oct; 219(Pt 20):3246-3252. PubMed ID: 27520654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery from tympanic membrane perforation: Effects on membrane thickness, auditory thresholds, and middle ear transmission.
    Cai L; Stomackin G; Perez NM; Lin X; Jung TT; Dong W
    Hear Res; 2019 Dec; 384():107813. PubMed ID: 31655347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-ossicular signal transmission in human middle ears: Experimental assessment of the "acoustic route" with perforated tympanic membranes.
    Voss SE; Rosowski JJ; Merchant SN; Peake WT
    J Acoust Soc Am; 2007 Oct; 122(4):2135-53. PubMed ID: 17902851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods?
    Christensen-Dalsgaard J; Brandt C; Wilson M; Wahlberg M; Madsen PT
    Biol Lett; 2011 Feb; 7(1):139-41. PubMed ID: 20826468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Understanding of Phocidae Hearing Adaptations Through a Study of Northern Elephant Seal (Mirounga angustirostris) Ear Anatomy and Histology.
    Smodlaka H; Khamas WA; Jungers H; Pan R; Al-Tikriti M; Borovac JA; Palmer L; Bukac M
    Anat Rec (Hoboken); 2019 Sep; 302(9):1605-1614. PubMed ID: 30417986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of the tympanic membrane.
    Volandri G; Di Puccio F; Forte P; Carmignani C
    J Biomech; 2011 Apr; 44(7):1219-36. PubMed ID: 21376326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem.
    Walton PL; Christensen-Dalsgaard J; Carr CE
    Brain Behav Evol; 2017; 90(2):131-153. PubMed ID: 28988244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.