These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35724474)

  • 1. An EfficientNet-based modified sigmoid transform for enhancing dermatological macro-images of melanoma and nevi skin lesions.
    Venugopal V; Joseph J; Vipin Das M; Kumar Nath M
    Comput Methods Programs Biomed; 2022 Jul; 222():106935. PubMed ID: 35724474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DTP-Net: A convolutional neural network model to predict threshold for localizing the lesions on dermatological macro-images.
    Venugopal V; Joseph J; Das MV; Nath MK
    Comput Biol Med; 2022 Sep; 148():105852. PubMed ID: 35853397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin Lesion Segmentation in Dermoscopic Images with Noisy Data.
    Lama N; Hagerty J; Nambisan A; Stanley RJ; Van Stoecker W
    J Digit Imaging; 2023 Aug; 36(4):1712-1722. PubMed ID: 37020149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanoma recognition in dermoscopy images using lesion's peripheral region information.
    Tajeddin NZ; Asl BM
    Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Hybrid Convolutional Neural Network for Segmentation of Melanoma Skin Lesion.
    Yang CH; Ren JH; Huang HC; Chuang LY; Chang PY
    Comput Intell Neurosci; 2021; 2021():9409508. PubMed ID: 34790232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanoma detection by analysis of clinical images using convolutional neural network.
    Nasr-Esfahani E; Samavi S; Karimi N; Soroushmehr SM; Jafari MH; Ward K; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1373-1376. PubMed ID: 28268581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of skin lesions using transfer learning and augmentation with Alex-net.
    Hosny KM; Kassem MA; Foaud MM
    PLoS One; 2019; 14(5):e0217293. PubMed ID: 31112591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of dermoscopy images based on deformable 3D convolution and ResU-NeXt +.
    Zhao C; Shuai R; Ma L; Liu W; Wu M
    Med Biol Eng Comput; 2021 Sep; 59(9):1815-1832. PubMed ID: 34304370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of a Melanoma and Nevus Data Set From Unstandardized Clinical Photographs on the Internet.
    Cho SI; Navarrete-Dechent C; Daneshjou R; Cho HS; Chang SE; Kim SH; Na JI; Han SS
    JAMA Dermatol; 2023 Nov; 159(11):1223-1231. PubMed ID: 37792351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional neural network-based skin image segmentation model to improve classification of skin diseases in conventional and non-standardized picture images.
    Yanagisawa Y; Shido K; Kojima K; Yamasaki K
    J Dermatol Sci; 2023 Jan; 109(1):30-36. PubMed ID: 36658056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Detection of Nonmelanoma Skin Cancer Based on Deep Convolutional Neural Network.
    Arif M; Philip FM; Ajesh F; Izdrui D; Craciun MD; Geman O
    J Healthc Eng; 2022; 2022():6952304. PubMed ID: 35186235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep bag-of-features model for the classification of melanomas in dermoscopy images.
    Sabbaghi S; Aldeen M; Garnavi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1369-1372. PubMed ID: 28268580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChimeraNet: U-Net for Hair Detection in Dermoscopic Skin Lesion Images.
    Lama N; Kasmi R; Hagerty JR; Stanley RJ; Young R; Miinch J; Nepal J; Nambisan A; Stoecker WV
    J Digit Imaging; 2023 Apr; 36(2):526-535. PubMed ID: 36385676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM).
    R D S; A S
    Asian Pac J Cancer Prev; 2019 May; 20(5):1555-1561. PubMed ID: 31128062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Modified Deep Semantic Segmentation Model for Analysis of Whole Slide Skin Images.
    Asaf MZ; Rasul H; Akram MU; Hina T; Rashid T; Shaukat A
    Sci Rep; 2024 Oct; 14(1):23489. PubMed ID: 39379448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.