These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 35725174)
21. Cellulose based polymers in development of amorphous solid dispersions. Chavan RB; Rathi S; Jyothi VGSS; Shastri NR Asian J Pharm Sci; 2019 May; 14(3):248-264. PubMed ID: 32104456 [TBL] [Abstract][Full Text] [Related]
22. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Li B; Konecke S; Wegiel LA; Taylor LS; Edgar KJ Carbohydr Polym; 2013 Oct; 98(1):1108-16. PubMed ID: 23987452 [TBL] [Abstract][Full Text] [Related]
23. Improved supersaturation and oral absorption of dutasteride by amorphous solid dispersions. Beak IH; Kim MS Chem Pharm Bull (Tokyo); 2012; 60(11):1468-73. PubMed ID: 23124571 [TBL] [Abstract][Full Text] [Related]
24. Crystallization from Supersaturated Solutions: Role of Lecithin and Composite Simulated Intestinal Fluid. Indulkar AS; Gao Y; Raina SA; Zhang GGZ; Taylor LS Pharm Res; 2018 Jun; 35(8):158. PubMed ID: 29916053 [TBL] [Abstract][Full Text] [Related]
25. Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates. Meng X; Matson JB; Edgar KJ Biomacromolecules; 2014 Jan; 15(1):177-87. PubMed ID: 24328072 [TBL] [Abstract][Full Text] [Related]
26. Effects of hydrophobic and hydrophilic bile salt mixtures on cholesterol crystallization in model biles. Venneman NG; Huisman SJ; Moschetta A; vanBerge-Henegouwen GP; van Erpecum KJ Biochim Biophys Acta; 2002 Jul; 1583(2):221-8. PubMed ID: 12117566 [TBL] [Abstract][Full Text] [Related]
27. Interaction of Polymers with Enzalutamide Nanodroplets-Impact on Droplet Properties and Induction Times. Wilson VR; Mugheirbi NA; Mosquera-Giraldo LI; Deac A; Moseson DE; Smith DT; Novo DC; Borca CH; Slipchenko LV; Edgar KJ; Taylor LS Mol Pharm; 2021 Mar; 18(3):836-849. PubMed ID: 33539105 [TBL] [Abstract][Full Text] [Related]
28. Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives. Xie T; Taylor LS Mol Pharm; 2016 Mar; 13(3):873-84. PubMed ID: 26791934 [TBL] [Abstract][Full Text] [Related]
29. Hybrid nanocrystal-amorphous solid dispersions (HyNASDs) as alternative to ASDs for enhanced release of BCS Class II drugs. Rahman M; Arevalo F; Coelho A; Bilgili E Eur J Pharm Biopharm; 2019 Dec; 145():12-26. PubMed ID: 31622652 [TBL] [Abstract][Full Text] [Related]
30. Dissolution of Danazol Amorphous Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and Polymer Type. Jackson MJ; Kestur US; Hussain MA; Taylor LS Mol Pharm; 2016 Jan; 13(1):223-31. PubMed ID: 26618718 [TBL] [Abstract][Full Text] [Related]
31. Dissolution Performance of High Drug Loading Celecoxib Amorphous Solid Dispersions Formulated with Polymer Combinations. Xie T; Taylor LS Pharm Res; 2016 Mar; 33(3):739-50. PubMed ID: 26563205 [TBL] [Abstract][Full Text] [Related]
32. Use of highly compressible Ceolus™ microcrystalline cellulose for improved dosage form properties containing a hydrophilic solid dispersion. Dinunzio JC; Schilling SU; Coney AW; Hughey JR; Kaneko N; McGinity JW Drug Dev Ind Pharm; 2012 Feb; 38(2):180-9. PubMed ID: 21774741 [TBL] [Abstract][Full Text] [Related]
33. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Xie T; Gao W; Taylor LS Int J Pharm; 2017 Oct; 531(1):313-323. PubMed ID: 28844901 [TBL] [Abstract][Full Text] [Related]
34. Bile salt structure and phase equilibria in aqueous bile salt and bile salt-lecithin systems. Carey MC Hepatology; 1984; 4(5 Suppl):138S-142S. PubMed ID: 6479869 [TBL] [Abstract][Full Text] [Related]
35. Partial replacement of bile salts causes marked changes of cholesterol crystallization in supersaturated model bile systems. Nishioka T; Tazuma S; Yamashita G; Kajiyama G Biochem J; 1999 Jun; 340 ( Pt 2)(Pt 2):445-51. PubMed ID: 10333488 [TBL] [Abstract][Full Text] [Related]
36. Synthesis and structure-property evaluation of cellulose ω-carboxyesters for amorphous solid dispersions. Liu H; Ilevbare GA; Cherniawski BP; Ritchie ET; Taylor LS; Edgar KJ Carbohydr Polym; 2014 Jan; 100():116-25. PubMed ID: 24188845 [TBL] [Abstract][Full Text] [Related]
37. Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport. Wilson V; Lou X; Osterling DJ; Stolarik DF; Jenkins G; Gao W; Zhang GGZ; Taylor LS J Control Release; 2018 Dec; 292():172-182. PubMed ID: 30408553 [TBL] [Abstract][Full Text] [Related]
38. Phase Behavior of Resveratrol Solid Dispersions Upon Addition to Aqueous media. Wegiel LA; Mosquera-Giraldo LI; Mauer LJ; Edgar KJ; Taylor LS Pharm Res; 2015 Oct; 32(10):3324-37. PubMed ID: 25975588 [TBL] [Abstract][Full Text] [Related]
39. Use of novel cationic bile salts in cholesterol crystallization and solubilization in vitro. Bhat S; Leikin-Gobbi D; Konikoff FM; Maitra U Biochim Biophys Acta; 2006 Oct; 1760(10):1489-96. PubMed ID: 16919881 [TBL] [Abstract][Full Text] [Related]
40. Cellulose-based amorphous solid dispersions enhance rifapentine delivery characteristics in vitro. Winslow CJ; Nichols BLB; Novo DC; Mosquera-Giraldo LI; Taylor LS; Edgar KJ; Neilson AP Carbohydr Polym; 2018 Feb; 182():149-158. PubMed ID: 29279109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]