BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35725212)

  • 1. Porous and conductive cellulose nanofiber/carbon nanotube foam as a humidity sensor with high sensitivity.
    Zhu P; Wei Y; Kuang Y; Qian Y; Liu Y; Jiang F; Chen G
    Carbohydr Polym; 2022 Sep; 292():119684. PubMed ID: 35725212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose Nanofiber/Carbon Nanotube Dual Network-Enabled Humidity Sensor with High Sensitivity and Durability.
    Zhu P; Ou H; Kuang Y; Hao L; Diao J; Chen G
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33229-33238. PubMed ID: 32608963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film.
    Zhu P; Liu Y; Fang Z; Kuang Y; Zhang Y; Peng C; Chen G
    Langmuir; 2019 Apr; 35(14):4834-4842. PubMed ID: 30892906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability.
    Zhu P; Kuang Y; Wei Y; Li F; Ou H; Jiang F; Chen G
    Chem Eng J; 2021 Jan; 404():127105. PubMed ID: 32994751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhydrophilic, Underwater Superoleophobic, and Highly Stretchable Humidity and Chemical Vapor Sensors for Human Breath Detection.
    Huang X; Li B; Wang L; Lai X; Xue H; Gao J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24533-24543. PubMed ID: 31246404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Humidity Sensor with High Sensitivity and Durability for Respiratory Monitoring Using Near-Field Electrohydrodynamic Direct-Writing Method.
    Pan T; Yu Z; Huang F; Yao H; Hu G; Tang C; Gu J
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28248-28257. PubMed ID: 37262400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite.
    Tachibana S; Wang YF; Sekine T; Takeda Y; Hong J; Yoshida A; Abe M; Miura R; Watanabe Y; Kumaki D; Tokito S
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5721-5728. PubMed ID: 35067045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films.
    Sheng L; Dajing C; Yuquan C
    Nanotechnology; 2011 Jul; 22(26):265504. PubMed ID: 21576796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications.
    Jatoi AW; Ogasawara H; Kim IS; Ni QQ
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110679. PubMed ID: 32204107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
    Qi K; Wang H; You X; Tao X; Li M; Zhou Y; Zhang Y; He J; Shao W; Cui S
    J Colloid Interface Sci; 2020 Mar; 561():93-103. PubMed ID: 31812870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing.
    Han M; Shen W
    Carbohydr Polym; 2022 Dec; 298():120109. PubMed ID: 36241326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices.
    Kim S; Amjadi M; Lee TI; Jeong Y; Kwon D; Kim MS; Kim K; Kim TS; Oh YS; Park I
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23639-23648. PubMed ID: 31180635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust and Highly Sensitive Cellulose Nanofiber-Based Humidity Actuators.
    Wei J; Jia S; Guan J; Ma C; Shao Z
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54417-54427. PubMed ID: 34734698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully Printed Cellulose Nanofiber-Ag Nanoparticle Composite for High-Performance Humidity Sensor.
    Won M; Jung M; Kim J; Kim DS
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flexible tissue-carbon nanocoil-carbon nanotube-based humidity sensor with high performance and durability.
    Li C; Zhang Y; Yang S; Zhao H; Guo Y; Cong T; Huang H; Fan Z; Liang H; Pan L
    Nanoscale; 2022 May; 14(18):7025-7038. PubMed ID: 35471502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D structure of lightweight, conductive cellulose nanofiber foam.
    Lee H; Kim S; Shin S; Hyun J
    Carbohydr Polym; 2021 Feb; 253():117238. PubMed ID: 33278994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralight Cellular Foam from Cellulose Nanofiber/Carbon Nanotube Self-Assemblies for Ultrabroad-Band Microwave Absorption.
    Xu H; Yin X; Li M; Li X; Li X; Dang X; Zhang L; Cheng L
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22628-22636. PubMed ID: 31244026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications.
    Ma S; Zhang M; Nie J; Tan J; Song S; Luo Y
    Carbohydr Polym; 2019 Mar; 208():328-335. PubMed ID: 30658808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guar Gum/Ethyl Cellulose-Polyvinyl Pyrrolidone Composite-Based Quartz Crystal Microbalance Humidity Sensor for Human Respiration Monitoring.
    Yan W; Zhang D; Liu X; Chen X; Yang C; Kang Z
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31343-31353. PubMed ID: 35786849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.