BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35725213)

  • 1. 3D-printing of oxidized starch-based hydrogels with superior hydration properties.
    Qiu Z; Zheng B; Xu J; Chen J; Chen L
    Carbohydr Polym; 2022 Sep; 292():119686. PubMed ID: 35725213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing.
    Zeng X; Chen H; Chen L; Zheng B
    Food Chem; 2021 Apr; 342():128362. PubMed ID: 33077283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing-mediated microporous starch hydrogels for wound hemostasis.
    Zheng B; Qiu Z; Xu J; Zeng X; Liu K; Chen L
    J Mater Chem B; 2023 Sep; 11(35):8411-8421. PubMed ID: 37463000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of cassava starch hydrogels for application in 3D printing using dry heating treatment (DHT): A prospective study on the effects of DHT and gelatinization conditions.
    Maniglia BC; Lima DC; Matta Junior MD; Le-Bail P; Le-Bail A; Augusto PED
    Food Res Int; 2020 Feb; 128():108803. PubMed ID: 31955764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starch concentration is an important factor for controlling its digestibility during hot-extrusion 3D printing.
    Zhang Z; Zheng B; Tang Y; Chen L
    Food Chem; 2022 Jun; 379():132180. PubMed ID: 35065499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of stearic acid on the microstructural, rheological and 3D printing characteristics of rice starch.
    Liu Z; Yang J; Shi Z; Chen L; Zheng B
    Int J Biol Macromol; 2021 Oct; 189():590-596. PubMed ID: 34454998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ferulic acid incorporation on structural, rheological, and digestive properties of hot-extrusion 3D-printed rice starch.
    Li Z; Liang J; Lu L; Liu L; Wang L
    Int J Biol Macromol; 2024 May; 266(Pt 2):131279. PubMed ID: 38561115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of starch-catechin interaction on regulation of starch digestibility during hot-extrusion 3D printing: Structural analysis and simulation study.
    Zheng B; Liu Z; Chen L; Qiu Z; Li T
    Food Chem; 2022 Nov; 393():133394. PubMed ID: 35688087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the structure, rheology and 3D printing characteristics of corn starch regulated by glycyrrhizic acid.
    Liu B; Zhao Y; Li Y; Tao L; Pan P; Bi Y; Song S; Yu L
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130277. PubMed ID: 38378116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogels based on ozonated cassava starch: Effect of ozone processing and gelatinization conditions on enhancing 3D-printing applications.
    Maniglia BC; Lima DC; Matta Junior MD; Le-Bail P; Le-Bail A; Augusto PED
    Int J Biol Macromol; 2019 Oct; 138():1087-1097. PubMed ID: 31340176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications.
    Xu C; Dai G; Hong Y
    Acta Biomater; 2019 Sep; 95():50-59. PubMed ID: 31125728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of starch-lipid interactions on starch digestibility during hot-extrusion 3D printing for starchy foods.
    Liu Z; Chen L; Zheng B
    Food Funct; 2022 May; 13(9):5317-5326. PubMed ID: 35445679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-dry heat treatment alters the structure and ultimate in vitro digestibility of wheat starch-lipids complex in hot-extrusion 3D printing.
    Zheng B; Qiu Z; Liu Z; Chen L
    Carbohydr Polym; 2024 Jun; 334():122026. PubMed ID: 38553225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of pH on pea protein-hydroxypropyl starch hydrogel based on interpenetrating network and its application in 3D-printing.
    Wang Y; Liu Q; Yang Y; Qiu C; Jiao A; Jin Z
    Food Res Int; 2023 Aug; 170():112966. PubMed ID: 37316054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing.
    Pudkon W; Laomeephol C; Damrongsakkul S; Kanokpanont S; Ratanavaraporn J
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of wheat protein on hot-extrusion 3D-printing performance and the release behaviours of caffeic acid-loaded wheat starch.
    Cui XR; Wang YS; Chen Y; Mu HY; Chen HH
    Int J Biol Macromol; 2024 Feb; 258(Pt 2):129097. PubMed ID: 38158066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Starch/PVA hydrogels for oil/water separation.
    Thakur K; Rajhans A; Kandasubramanian B
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32013-32028. PubMed ID: 31493081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of sweet potato starch as a structural enhancer for three-dimensional printing of Scomberomorus niphonius surimi.
    Dong X; Huang Y; Pan Y; Wang K; Prakash S; Zhu B
    J Texture Stud; 2019 Aug; 50(4):316-324. PubMed ID: 30847926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation and Characterization of a 3D-Printed Cryptotanshinone-Loaded Niosomal Hydrogel for Topical Therapy of Acne.
    Wang Z; Liu L; Xiang S; Jiang C; Wu W; Ruan S; Du Q; Chen T; Xue Y; Chen H; Weng L; Zhu H; Shen Q; Liu Q
    AAPS PharmSciTech; 2020 May; 21(5):159. PubMed ID: 32476076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dielectric barrier discharge (DBD) plasma treatment on physicochemical and 3D printing properties of wheat starch.
    Ma S; Ma T; Tsuchikawa S; Inagaki T; Wang H; Jiang H
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132159. PubMed ID: 38719018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.