BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35725840)

  • 1. Chaotic microlasers caused by internal mode interaction for random number generation.
    Ma CG; Xiao JL; Xiao ZX; Yang YD; Huang YZ
    Light Sci Appl; 2022 Jun; 11(1):187. PubMed ID: 35725840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observing chaos for quantum-dot microlasers with external feedback.
    Albert F; Hopfmann C; Reitzenstein S; Schneider C; Höfling S; Worschech L; Kamp M; Kinzel W; Forchel A; Kanter I
    Nat Commun; 2011 Jun; 2():366. PubMed ID: 21694714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wideband chaotic tri-mode microlasers with optical feedback.
    Li YL; Ma CG; Xiao JL; Wang T; Wu JL; Yang YD; Huang YZ
    Opt Express; 2022 Jan; 30(2):2122-2130. PubMed ID: 35209359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaotic light at mid-infrared wavelength.
    Jumpertz L; Schires K; Carras M; Sciamanna M; Grillot F
    Light Sci Appl; 2016 Jun; 5(6):e16088. PubMed ID: 30167171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference.
    Wang A; Yang Y; Wang B; Zhang B; Li L; Wang Y
    Opt Express; 2013 Apr; 21(7):8701-10. PubMed ID: 23571959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers.
    Hirano K; Yamazaki T; Morikatsu S; Okumura H; Aida H; Uchida A; Yoshimori S; Yoshimura K; Harayama T; Davis P
    Opt Express; 2010 Mar; 18(6):5512-24. PubMed ID: 20389568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaos synchronization based on a continuous chaos control method in semiconductor lasers with optical feedback.
    Murakami A; Ohtsubo J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066203. PubMed ID: 11415202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical chaos generated in semiconductor lasers with intensity-modulated optical injection:a numerical study.
    Zeng Y; Zhou P; Huang Y; Li N
    Appl Opt; 2021 Sep; 60(26):7963-7972. PubMed ID: 34613056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaotic dynamics and synchronization in microchip solid-state lasers with optoelectronic feedback.
    Uchida A; Mizumura K; Yoshimori S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066206. PubMed ID: 17280138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical time domain reflectometry based on a self-chaotic circular-sided microcavity laser.
    Li JC; Dong YX; Lei BJ; Xiao JL; Yang YD; Huang YZ
    Appl Opt; 2024 Jan; 63(1):154-158. PubMed ID: 38175016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaotic time-delay signature suppression using quantum noise.
    Guo Y; Fang X; Zhang H; Zhao T; Virte M; Guo X
    Opt Lett; 2021 Oct; 46(19):4888-4891. PubMed ID: 34598226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband chaos generation utilizing a wavelength-tunable monolithically integrated chaotic semiconductor laser subject to optical feedback.
    Chai M; Qiao L; Wei X; Li S; Zhang C; Wang Q; Xu H; Zhang M
    Opt Express; 2022 Dec; 30(25):44717-44725. PubMed ID: 36522890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback insensitivity in a self-chaotic microcavity laser.
    Dong YX; Li JC; Li YL; Shi Y; Xiao JL; Yang YD; Huang YZ; Chen YL
    Opt Lett; 2024 Jan; 49(1):69-72. PubMed ID: 38134154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback.
    Jiang N; Zhao A; Liu S; Xue C; Qiu K
    Opt Express; 2018 Dec; 26(25):32404-32416. PubMed ID: 30645408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust random number generator based on differential comparison of chaotic laser signals.
    Zhang J; Wang Y; Liu M; Xue L; Li P; Wang A; Zhang M
    Opt Express; 2012 Mar; 20(7):7496-506. PubMed ID: 22453429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter.
    Li P; Cai Q; Zhang J; Xu B; Liu Y; Bogris A; Shore KA; Wang Y
    Opt Express; 2019 Jun; 27(13):17859-17867. PubMed ID: 31252738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-entropy-rate broadband chaos generation by using short-resonant-cavity DFB semiconductor laser with optical feedback.
    Jia Z; Zhao A; Li Q; Chen W; Wang L; Zhao T; Guo Y; Chang P; Sun Y; Wang Y; Wang A
    Opt Lett; 2023 Jun; 48(12):3331-3334. PubMed ID: 37319094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of single- and dual-mode lasing states of a hybrid-cavity laser under optical feedback.
    Hao YZ; Ma CG; Shen ZZ; Li JC; Xiao JL; Yang YD; Huang YZ
    Opt Lett; 2021 May; 46(9):2115-2118. PubMed ID: 33929431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection.
    Someya H; Oowada I; Okumura H; Kida T; Uchida A
    Opt Express; 2009 Oct; 17(22):19536-43. PubMed ID: 19997173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forecasting the chaotic dynamics of external cavity semiconductor lasers.
    Kai C; Li P; Yang Y; Wang B; Alan Shore K; Wang Y
    Opt Lett; 2023 Mar; 48(5):1236-1239. PubMed ID: 36857263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.