These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35725893)

  • 1. An interpretable machine learning approach to identify mechanism of action of antibiotics.
    Mongia M; Guler M; Mohimani H
    Sci Rep; 2022 Jun; 12(1):10342. PubMed ID: 35725893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A brief guide to machine learning for antibiotic discovery.
    Liu G; Stokes JM
    Curr Opin Microbiol; 2022 Oct; 69():102190. PubMed ID: 35963098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep Learning Approach to Antibiotic Discovery.
    Stokes JM; Yang K; Swanson K; Jin W; Cubillos-Ruiz A; Donghia NM; MacNair CR; French S; Carfrae LA; Bloom-Ackermann Z; Tran VM; Chiappino-Pepe A; Badran AH; Andrews IW; Chory EJ; Church GM; Brown ED; Jaakkola TS; Barzilay R; Collins JJ
    Cell; 2020 Feb; 180(4):688-702.e13. PubMed ID: 32084340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems-Level Chemical Biology to Accelerate Antibiotic Drug Discovery.
    Farha MA; French S; Brown ED
    Acc Chem Res; 2021 Apr; 54(8):1909-1920. PubMed ID: 33787225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs.
    Nava Lara RA; Aguilera-Mendoza L; Brizuela CA; Peña A; Del Rio G
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30935109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic discovery in the artificial intelligence era.
    Lluka T; Stokes JM
    Ann N Y Acad Sci; 2023 Jan; 1519(1):74-93. PubMed ID: 36447334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Biofilm: Machine Learning Assisted Prediction of IC
    Rajput A; Bhamare KT; Thakur A; Kumar M
    J Mol Biol; 2023 Jul; 435(14):168115. PubMed ID: 37356913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small angle X-ray scattering as a high-throughput method to classify antimicrobial modes of action.
    von Gundlach AR; Garamus VM; Gorniak T; Davies HA; Reischl M; Mikut R; Hilpert K; Rosenhahn A
    Biochim Biophys Acta; 2016 May; 1858(5):918-25. PubMed ID: 26730877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs.
    Kim W; Hendricks GL; Lee K; Mylonakis E
    Expert Opin Drug Discov; 2017 Jun; 12(6):625-633. PubMed ID: 28402221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial resistance crisis: could artificial intelligence be the solution?
    Liu GY; Yu D; Fan MM; Zhang X; Jin ZY; Tang C; Liu XF
    Mil Med Res; 2024 Jan; 11(1):7. PubMed ID: 38254241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turbo prediction: a new approach for bioactivity prediction.
    Abdo A; Pupin M
    J Comput Aided Mol Des; 2022 Jan; 36(1):77-85. PubMed ID: 35059941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research.
    Anahtar MN; Yang JH; Kanjilal S
    J Clin Microbiol; 2021 Jun; 59(7):e0126020. PubMed ID: 33536291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual screening of antimicrobial plant extracts by machine-learning classification of chemical compounds in semantic space.
    Yabuuchi H; Hayashi K; Shigemoto A; Fujiwara M; Nomura Y; Nakashima M; Ogusu T; Mori M; Tokumoto SI; Miyai K
    PLoS One; 2023; 18(5):e0285716. PubMed ID: 37186641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning framework to predict antibiotic resistance traits and yet unknown genes underlying resistance to specific antibiotics in bacterial strains.
    Sunuwar J; Azad RK
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34015806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning assisted design of highly active peptides for drug discovery.
    Giguère S; Laviolette F; Marchand M; Tremblay D; Moineau S; Liang X; Biron É; Corbeil J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004074. PubMed ID: 25849257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources of novel antibiotics--aside the common roads.
    Donadio S; Maffioli S; Monciardini P; Sosio M; Jabes D
    Appl Microbiol Biotechnol; 2010 Dec; 88(6):1261-7. PubMed ID: 20865256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. History of Antibiotics Research.
    Mohr KI
    Curr Top Microbiol Immunol; 2016; 398():237-272. PubMed ID: 27738915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains.
    Her HL; Wu YW
    Bioinformatics; 2018 Jul; 34(13):i89-i95. PubMed ID: 29949970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of (quinolin-4-ylthio)carboxylic acids as new Escherichia coli DNA gyrase B inhibitors: machine learning studies, molecular docking, synthesis and biological testing.
    Metelytsia L; Hodyna D; Dobrodub I; Semenyuta I; Zavhorodnii M; Blagodatny V; Kovalishyn V; Brazhko O
    Comput Biol Chem; 2020 Apr; 85():107224. PubMed ID: 32018168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.