These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35725893)

  • 21. Design of (quinolin-4-ylthio)carboxylic acids as new Escherichia coli DNA gyrase B inhibitors: machine learning studies, molecular docking, synthesis and biological testing.
    Metelytsia L; Hodyna D; Dobrodub I; Semenyuta I; Zavhorodnii M; Blagodatny V; Kovalishyn V; Brazhko O
    Comput Biol Chem; 2020 Apr; 85():107224. PubMed ID: 32018168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molib: A machine learning based classification tool for the prediction of biofilm inhibitory molecules.
    Srivastava GN; Malwe AS; Sharma AK; Shastri V; Hibare K; Sharma VK
    Genomics; 2020 Jul; 112(4):2823-2832. PubMed ID: 32229287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning.
    Ribeiro da Cunha B; Fonseca LP; Calado CRC
    Appl Microbiol Biotechnol; 2021 Feb; 105(3):1269-1286. PubMed ID: 33443637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent approaches in design of peptidomimetics for antimicrobial drug discovery research.
    Lohan S; Bisht GS
    Mini Rev Med Chem; 2013 Jun; 13(7):1073-88. PubMed ID: 23621691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical genomics reveals mechanistic hypotheses for uncharacterized bioactive molecules in bacteria.
    French S; Ellis MJ; Coutts BE; Brown ED
    Curr Opin Microbiol; 2017 Oct; 39():42-47. PubMed ID: 28957731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Next-Generation Drug Discovery to Combat Antimicrobial Resistance.
    Niu G; Li W
    Trends Biochem Sci; 2019 Nov; 44(11):961-972. PubMed ID: 31256981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism-of-Action Classification of Antibiotics by Global Transcriptome Profiling.
    O'Rourke A; Beyhan S; Choi Y; Morales P; Chan AP; Espinoza JL; Dupont CL; Meyer KJ; Spoering A; Lewis K; Nierman WC; Nelson KE
    Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31907190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growing Preferences towards Analog-based Drug Discovery.
    Dangi M; Khichi A; Jakhar R; Chhillar AK
    Curr Pharm Biotechnol; 2021; 22(8):1030-1045. PubMed ID: 32900347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Dynamics for Antimicrobial Peptide Discovery.
    Palmer N; Maasch JRMA; Torres MDT; de la Fuente-Nunez C
    Infect Immun; 2021 Mar; 89(4):. PubMed ID: 33558318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery.
    Wu Q; Ke H; Li D; Wang Q; Fang J; Zhou J
    Curr Top Med Chem; 2019; 19(1):4-16. PubMed ID: 30674262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic tools to profile antibiotic mode of action.
    Cardona ST; Selin C; Gislason AS
    Crit Rev Microbiol; 2015; 41(4):465-72. PubMed ID: 24617440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioinformatics approaches for new drug discovery: a review.
    Malathi K; Ramaiah S
    Biotechnol Genet Eng Rev; 2018 Oct; 34(2):243-260. PubMed ID: 30064294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action.
    Roy R; Tiwari M; Donelli G; Tiwari V
    Virulence; 2018 Jan; 9(1):522-554. PubMed ID: 28362216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics.
    Hoerr V; Duggan GE; Zbytnuik L; Poon KK; Große C; Neugebauer U; Methling K; Löffler B; Vogel HJ
    BMC Microbiol; 2016 May; 16():82. PubMed ID: 27159970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the ability of machine learning methods to discover novel scaffolds.
    Jagdev R; Madsen TB; Finn PW
    J Mol Model; 2022 Dec; 29(1):22. PubMed ID: 36574054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidating Compound Mechanism of Action and Predicting Cytotoxicity Using Machine Learning Approaches, Taking Prediction Confidence into Account.
    Drakakis G; Cortés-Ciriano I; Alexander-Dann B; Bender A
    Curr Protoc Chem Biol; 2019 Sep; 11(3):e73. PubMed ID: 31483099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of antischistosomal small molecules using machine learning in the era of big data.
    Kwofie SK; Agyenkwa-Mawuli K; Broni E; Miller Iii WA; Wilson MD
    Mol Divers; 2022 Jun; 26(3):1597-1607. PubMed ID: 34351547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning approaches for elucidating the biological effects of natural products.
    Zhang R; Li X; Zhang X; Qin H; Xiao W
    Nat Prod Rep; 2021 Mar; 38(2):346-361. PubMed ID: 32869826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine Learning Techniques for Antimicrobial Resistance Prediction of
    Noman SM; Zeeshan M; Arshad J; Deressa Amentie M; Shafiq M; Yuan Y; Zeng M; Li X; Xie Q; Jiao X
    Comput Intell Neurosci; 2023; 2023():5236168. PubMed ID: 36909968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine Learning Platform to Discover Novel Growth Inhibitors of Neisseria gonorrhoeae.
    Pereira JC; Daher SS; Zorn KM; Sherwood M; Russo R; Perryman AL; Wang X; Freundlich MJ; Ekins S; Freundlich JS
    Pharm Res; 2020 Jul; 37(7):141. PubMed ID: 32661900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.