These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35725977)

  • 21. Computational study of the "DFG-flip" conformational transition in c-Abl and c-Src tyrosine kinases.
    Meng Y; Lin YL; Roux B
    J Phys Chem B; 2015 Jan; 119(4):1443-56. PubMed ID: 25548962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomistic Modeling of the ABL Kinase Regulation by Allosteric Modulators Using Structural Perturbation Analysis and Community-Based Network Reconstruction of Allosteric Communications.
    Astl L; Verkhivker GM
    J Chem Theory Comput; 2019 May; 15(5):3362-3380. PubMed ID: 31017783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase.
    Lin YL; Meng Y; Jiang W; Roux B
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1664-9. PubMed ID: 23319661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A general strategy for creating "inactive-conformation" abl inhibitors.
    Okram B; Nagle A; Adrián FJ; Lee C; Ren P; Wang X; Sim T; Xie Y; Wang X; Xia G; Spraggon G; Warmuth M; Liu Y; Gray NS
    Chem Biol; 2006 Jul; 13(7):779-86. PubMed ID: 16873026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion.
    Dölker N; Górna MW; Sutto L; Torralba AS; Superti-Furga G; Gervasio FL
    PLoS Comput Biol; 2014 Oct; 10(10):e1003863. PubMed ID: 25299346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations.
    Seeliger MA; Ranjitkar P; Kasap C; Shan Y; Shaw DE; Shah NP; Kuriyan J; Maly DJ
    Cancer Res; 2009 Mar; 69(6):2384-92. PubMed ID: 19276351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tyrosine phosphorylation in the SH3 domain disrupts negative regulatory interactions within the c-Abl kinase core.
    Chen S; O'Reilly LP; Smithgall TE; Engen JR
    J Mol Biol; 2008 Nov; 383(2):414-23. PubMed ID: 18775435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571).
    Nagar B; Bornmann WG; Pellicena P; Schindler T; Veach DR; Miller WT; Clarkson B; Kuriyan J
    Cancer Res; 2002 Aug; 62(15):4236-43. PubMed ID: 12154025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of human c-Abl tyrosine kinase activity and regulation in S. pombe.
    Walkenhorst J; Goga A; Witte ON; Superti-Furga G
    Oncogene; 1996 Apr; 12(7):1513-20. PubMed ID: 8622867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase.
    Mayer BJ; Baltimore D
    Mol Cell Biol; 1994 May; 14(5):2883-94. PubMed ID: 8164650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics Simulations and Structural Network Analysis of c-Abl and c-Src Kinase Core Proteins: Capturing Allosteric Mechanisms and Communication Pathways from Residue Centrality.
    Tse A; Verkhivker GM
    J Chem Inf Model; 2015 Aug; 55(8):1645-62. PubMed ID: 26236953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational flexibility, binding energy, role of salt bridge and alanine-mutagenesis for c-Abl kinase complex.
    Dubey KD; Ojha RP
    J Mol Model; 2012 May; 18(5):1679-89. PubMed ID: 21811775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two distinct phosphorylation pathways have additive effects on Abl family kinase activation.
    Tanis KQ; Veach D; Duewel HS; Bornmann WG; Koleske AJ
    Mol Cell Biol; 2003 Jun; 23(11):3884-96. PubMed ID: 12748290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase.
    Schindler T; Bornmann W; Pellicena P; Miller WT; Clarkson B; Kuriyan J
    Science; 2000 Sep; 289(5486):1938-42. PubMed ID: 10988075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. c-ABL modulates MAP kinases activation downstream of VEGFR-2 signaling by direct phosphorylation of the adaptor proteins GRB2 and NCK1.
    Anselmi F; Orlandini M; Rocchigiani M; De Clemente C; Salameh A; Lentucci C; Oliviero S; Galvagni F
    Angiogenesis; 2012 Jun; 15(2):187-97. PubMed ID: 22327338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Src-like inactive conformation in the abl tyrosine kinase domain.
    Levinson NM; Kuchment O; Shen K; Young MA; Koldobskiy M; Karplus M; Cole PA; Kuriyan J
    PLoS Biol; 2006 May; 4(5):e144. PubMed ID: 16640460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A historical overview of protein kinases and their targeted small molecule inhibitors.
    Roskoski R
    Pharmacol Res; 2015 Oct; 100():1-23. PubMed ID: 26207888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility.
    Lamontanara AJ; Georgeon S; Tria G; Svergun DI; Hantschel O
    Nat Commun; 2014 Nov; 5():5470. PubMed ID: 25399951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.
    Chen S; Brier S; Smithgall TE; Engen JR
    Protein Sci; 2007 Apr; 16(4):572-81. PubMed ID: 17327393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the T315I Abl mutant in complex with the aurora kinases inhibitor PHA-739358.
    Modugno M; Casale E; Soncini C; Rosettani P; Colombo R; Lupi R; Rusconi L; Fancelli D; Carpinelli P; Cameron AD; Isacchi A; Moll J
    Cancer Res; 2007 Sep; 67(17):7987-90. PubMed ID: 17804707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.