These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
499 related articles for article (PubMed ID: 35726439)
1. High-Stretchability, Ultralow-Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines. Shen Z; Zhang Z; Zhang N; Li J; Zhou P; Hu F; Rong Y; Lu B; Gu G Adv Mater; 2022 Aug; 34(32):e2203650. PubMed ID: 35726439 [TBL] [Abstract][Full Text] [Related]
2. Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring. Cao J; Zhang Z; Li K; Ma C; Zhou W; Lin T; Xu J; Liu X Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686973 [TBL] [Abstract][Full Text] [Related]
3. Hydroxypropyl methyl cellulose reinforced conducting polymer hydrogels with ultra-stretchability and low hysteresis as highly sensitive strain sensors for wearable health monitoring. Xu L; Liu S; Zhu L; Liu Y; Li N; Shi X; Jiao T; Qin Z Int J Biol Macromol; 2023 May; 236():123956. PubMed ID: 36898462 [TBL] [Abstract][Full Text] [Related]
4. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications. Lo LW; Zhao J; Wan H; Wang Y; Chakrabartty S; Wang C ACS Appl Mater Interfaces; 2021 May; 13(18):21693-21702. PubMed ID: 33926183 [TBL] [Abstract][Full Text] [Related]
5. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. Peng X; Wang W; Yang W; Chen J; Peng Q; Wang T; Yang D; Wang J; Zhang H; Zeng H J Colloid Interface Sci; 2022 Jul; 618():111-120. PubMed ID: 35338921 [TBL] [Abstract][Full Text] [Related]
6. Self-Healable Conductive Hydrogels with High Stretchability and Ultralow Hysteresis for Soft Electronics. Prameswati A; Nurmaulia Entifar SA; Han JW; Wibowo AF; Kim JH; Sembiring YSB; Park J; Lee J; Lee AY; Song MH; Kim S; Lim DC; Eom Y; Heo S; Moon MW; Kim MS; Kim YH ACS Appl Mater Interfaces; 2023 May; 15(20):24648-24657. PubMed ID: 37170066 [TBL] [Abstract][Full Text] [Related]
7. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics. Yu J; Wan R; Tian F; Cao J; Wang W; Liu Q; Yang H; Liu J; Liu X; Lin T; Xu J; Lu B Small; 2024 May; 20(19):e2308778. PubMed ID: 38063822 [TBL] [Abstract][Full Text] [Related]
8. 3D Printing Silk Fibroin/Polyacrylamide Triple-Network Composite Hydrogels with Stretchability, Conductivity, and Strain-Sensing Ability as Bionic Electronic Skins. Niu Q; Huang L; Fan S; Yao X; Zhang Y ACS Biomater Sci Eng; 2024 May; 10(5):3489-3499. PubMed ID: 38661561 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional acetylated distarch phosphate based conducting hydrogel with high stretchability, ultralow hysteresis and fast response for wearable strain sensors. Wang Y; Song L; Wang Q; Wang L; Li S; Du H; Wang C; Wang Y; Xue P; Nie WC; Wang X; Tang S Carbohydr Polym; 2023 Oct; 318():121106. PubMed ID: 37479435 [TBL] [Abstract][Full Text] [Related]
10. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors. Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710 [TBL] [Abstract][Full Text] [Related]
11. 3D printing of conducting polymers. Yuk H; Lu B; Lin S; Qu K; Xu J; Luo J; Zhao X Nat Commun; 2020 Mar; 11(1):1604. PubMed ID: 32231216 [TBL] [Abstract][Full Text] [Related]
12. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors. Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523 [TBL] [Abstract][Full Text] [Related]
13. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. Zhao L; Ren Z; Liu X; Ling Q; Li Z; Gu H ACS Appl Mater Interfaces; 2021 Mar; 13(9):11344-11355. PubMed ID: 33620195 [TBL] [Abstract][Full Text] [Related]
14. Self-powered strain sensing devices with wireless transmission: DIW-printed conductive hydrogel electrodes featuring stretchable and self-healing properties. Cong C; Wang R; Zhu W; Zheng X; Sun F; Wang X; Jiang F; Joo SW; Lim S; Kim SH; Li X J Colloid Interface Sci; 2025 Jan; 678(Pt B):588-598. PubMed ID: 39265331 [TBL] [Abstract][Full Text] [Related]
15. An adhesive, highly stretchable and low-hysteresis alginate-based conductive hydrogel strain sensing system for motion capture. Cao J; Zhang Z; Wang L; Lin T; Li H; Zhao Q; Wang H; Liu X; Yang H; Lu B Int J Biol Macromol; 2024 Nov; 281(Pt 4):136581. PubMed ID: 39414213 [TBL] [Abstract][Full Text] [Related]
16. Mxene Reinforced Supramolecular Hydrogels with High Strength, Stretchability, and Reliable Conductivity for Sensitive Strain Sensors. Zeng Z; Yu S; Guo C; Lu D; Geng Z; Pei D Macromol Rapid Commun; 2022 Aug; 43(15):e2200103. PubMed ID: 35319127 [TBL] [Abstract][Full Text] [Related]
17. Bioinspired 3D Printable, Self-Healable, and Stretchable Hydrogels with Multiple Conductivities for Skin-like Wearable Strain Sensors. Wei J; Xie J; Zhang P; Zou Z; Ping H; Wang W; Xie H; Shen JZ; Lei L; Fu Z ACS Appl Mater Interfaces; 2021 Jan; 13(2):2952-2960. PubMed ID: 33411490 [TBL] [Abstract][Full Text] [Related]
18. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Karimzadeh Z; Mahmoudpour M; Rahimpour E; Jouyban A Adv Colloid Interface Sci; 2022 Jul; 305():102705. PubMed ID: 35640315 [TBL] [Abstract][Full Text] [Related]
19. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Rahmani P; Shojaei A Adv Colloid Interface Sci; 2021 Dec; 298():102553. PubMed ID: 34768136 [TBL] [Abstract][Full Text] [Related]
20. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]