These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35726484)

  • 1. Preparation of Highly Stable and Electrochemically Active Three-dimensional Interconnected Graphene Frameworks from Jute Sticks.
    Shah SS; Yang H; Ashraf M; Qasem MAA; Hakeem AS; Aziz MA
    Chem Asian J; 2022 Aug; 17(16):e202200567. PubMed ID: 35726484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of graphene by electrical explosion of graphite sticks.
    Gao X; Xu C; Yin H; Wang X; Song Q; Chen P
    Nanoscale; 2017 Aug; 9(30):10639-10646. PubMed ID: 28541362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass-Derived Carbonaceous Materials with Graphene/Graphene-Like Structures: Definition, Classification, and Environmental Applications.
    Yuan SJ; Wang JJ; Dong B; Dai XH
    Environ Sci Technol; 2023 Nov; 57(45):17169-17177. PubMed ID: 37859331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Utilization of Jute-Derived Carbon: A Short Review.
    Aziz A; Shah SS; Kashem A
    Chem Rec; 2020 Sep; 20(9):1074-1098. PubMed ID: 32794376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.
    Asadullah M; Asaduzzaman M; Kabir MS; Mostofa MG; Miyazawa T
    J Hazard Mater; 2010 Feb; 174(1-3):437-43. PubMed ID: 19815339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical nature of electrochemical activation of carbon electrodes.
    Li Y; Zhou J; Song J; Liang X; Zhang Z; Men D; Wang D; Zhang XE
    Biosens Bioelectron; 2019 Nov; 144():111534. PubMed ID: 31518791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets.
    Zhang S; Shao Y; Liao H; Engelhard MH; Yin G; Lin Y
    ACS Nano; 2011 Mar; 5(3):1785-91. PubMed ID: 21361350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide.
    Fan ZJ; Kai W; Yan J; Wei T; Zhi LJ; Feng J; Ren YM; Song LP; Wei F
    ACS Nano; 2011 Jan; 5(1):191-8. PubMed ID: 21230006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green Carbon Nanostructures for Functional Composite Materials.
    Barra A; Nunes C; Ruiz-Hitzky E; Ferreira P
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Colloids Surf B Biointerfaces; 2013 Feb; 102():772-7. PubMed ID: 23107955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Colloids Surf B Biointerfaces; 2013 May; 105():58-66. PubMed ID: 23352948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Present Status and Future Prospects of Jute in Nanotechnology: A Review.
    Shah SS; Shaikh MN; Khan MY; Alfasane MA; Rahman MM; Aziz MA
    Chem Rec; 2021 Jul; 21(7):1631-1665. PubMed ID: 34132038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes.
    Ding J; Wang H; Li Z; Kohandehghan A; Cui K; Xu Z; Zahiri B; Tan X; Lotfabad EM; Olsen BC; Mitlin D
    ACS Nano; 2013 Dec; 7(12):11004-15. PubMed ID: 24191681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.
    Wu ZY; Liang HW; Chen LF; Hu BC; Yu SH
    Acc Chem Res; 2016 Jan; 49(1):96-105. PubMed ID: 26642085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miscanthus as a carbon precursor for graphene oxide: A possibility influenced by pyrolysis temperature.
    Yan Y; Meng Y; Zhao H; Lester E; Wu T; Pang CH
    Bioresour Technol; 2021 Jul; 331():124934. PubMed ID: 33798864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green chemistry approach for the synthesis of biocompatible graphene.
    Gurunathan S; Han JW; Kim JH
    Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jute sticks biomass delignification through laccase-mediator system for enhanced saccharification and sustainable release of fermentable sugar.
    Suman SK; Malhotra M; Kurmi AK; Narani A; Bhaskar T; Ghosh S; Jain SL
    Chemosphere; 2022 Jan; 286(Pt 2):131687. PubMed ID: 34343919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples.
    Sha T; Liu J; Sun M; Li L; Bai J; Hu Z; Zhou M
    Talanta; 2019 Aug; 200():300-306. PubMed ID: 31036188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid.
    Chen D; Li L; Guo L
    Nanotechnology; 2011 Aug; 22(32):325601. PubMed ID: 21757797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.