These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Live-cell imaging defines a threshold in CDK activity at the G2/M transition. Sugiyama H; Goto Y; Kondo Y; Coudreuse D; Aoki K Dev Cell; 2024 Feb; 59(4):545-557.e4. PubMed ID: 38228139 [TBL] [Abstract][Full Text] [Related]
4. CDK Substrate Phosphorylation and Ordering the Cell Cycle. Swaffer MP; Jones AW; Flynn HR; Snijders AP; Nurse P Cell; 2016 Dec; 167(7):1750-1761.e16. PubMed ID: 27984725 [TBL] [Abstract][Full Text] [Related]
5. The fission yeast S-phase cyclin Cig2 can drive mitosis. Pickering M; Magner M; Keifenheim D; Rhind N Genetics; 2021 Mar; 217(1):1-12. PubMed ID: 33683349 [TBL] [Abstract][Full Text] [Related]
6. The Hydrophobic Patch Directs Cyclin B to Centrosomes to Promote Global CDK Phosphorylation at Mitosis. Basu S; Roberts EL; Jones AW; Swaffer MP; Snijders AP; Nurse P Curr Biol; 2020 Mar; 30(5):883-892.e4. PubMed ID: 32084401 [TBL] [Abstract][Full Text] [Related]
7. CDK activity at the centrosome regulates the cell cycle. Roberts EL; Greenwood J; Kapadia N; Auchynnikava T; Basu S; Nurse P Cell Rep; 2024 Apr; 43(4):114066. PubMed ID: 38578823 [TBL] [Abstract][Full Text] [Related]
8. Quantitative Phosphoproteomics Reveals the Signaling Dynamics of Cell-Cycle Kinases in the Fission Yeast Schizosaccharomyces pombe. Swaffer MP; Jones AW; Flynn HR; Snijders AP; Nurse P Cell Rep; 2018 Jul; 24(2):503-514. PubMed ID: 29996109 [TBL] [Abstract][Full Text] [Related]
9. CDK control pathways integrate cell size and ploidy information to control cell division. Patterson JO; Basu S; Rees P; Nurse P Elife; 2021 Jun; 10():. PubMed ID: 34114564 [TBL] [Abstract][Full Text] [Related]
10. A quantitative and spatial analysis of cell cycle regulators during the fission yeast cycle. Curran S; Dey G; Rees P; Nurse P Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2206172119. PubMed ID: 36037351 [TBL] [Abstract][Full Text] [Related]
11. Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. Bremmer SC; Hall H; Martinez JS; Eissler CL; Hinrichsen TH; Rossie S; Parker LL; Hall MC; Charbonneau H J Biol Chem; 2012 Jan; 287(3):1662-9. PubMed ID: 22117071 [TBL] [Abstract][Full Text] [Related]
13. Phospho-regulation of the Cdc14/Clp1 phosphatase delays late mitotic events in S. pombe. Wolfe BA; McDonald WH; Yates JR; Gould KL Dev Cell; 2006 Sep; 11(3):423-30. PubMed ID: 16950131 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the replication initiator protein p65cdc18 by CDK phosphorylation. Jallepalli PV; Brown GW; Muzi-Falconi M; Tien D; Kelly TJ Genes Dev; 1997 Nov; 11(21):2767-79. PubMed ID: 9353247 [TBL] [Abstract][Full Text] [Related]
15. A single cyclin-CDK complex is sufficient for both mitotic and meiotic progression in fission yeast. Gutiérrez-Escribano P; Nurse P Nat Commun; 2015 Apr; 6():6871. PubMed ID: 25891897 [TBL] [Abstract][Full Text] [Related]
16. The basic leucine zipper domain transcription factor Atf1 directly controls Cdc13 expression and regulates mitotic entry independently of Wee1 and Cdc25 in Schizosaccharomyces pombe. Bandyopadhyay S; Dey I; Suresh M; Sundaram G Eukaryot Cell; 2014 Jun; 13(6):813-21. PubMed ID: 24728197 [TBL] [Abstract][Full Text] [Related]
17. Temporal control of the dephosphorylation of Cdk substrates by mitotic exit pathways in budding yeast. Jin F; Liu H; Liang F; Rizkallah R; Hurt MM; Wang Y Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16177-82. PubMed ID: 18845678 [TBL] [Abstract][Full Text] [Related]