BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35726662)

  • 1. Molecular hydrogen isotope separation by a graphdiyne membrane: a quantum-mechanical study.
    García-Arroyo E; Campos-Martínez J; Bartolomei M; Pirani F; Hernández MI
    Phys Chem Chem Phys; 2022 Jul; 24(26):15840-15850. PubMed ID: 35726662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects.
    Hernández MI; Bartolomei M; Campos-Martínez J
    J Phys Chem A; 2015 Oct; 119(43):10743-9. PubMed ID: 26447561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach to separate hydrogen from carbon dioxide using graphdiyne-like membrane.
    Rezaee P; Naeij HR
    Sci Rep; 2020 Aug; 10(1):13549. PubMed ID: 32782345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helium Isotopes Quantum Sieving through Graphtriyne Membranes.
    Hernández MI; Bartolomei M; Campos-Martínez J
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33396322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the Dynamic Behaviour of H
    Yang D; Rochat S; Krzystyniak M; Kulak A; Olivier J; Ting VP; Tian M
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12467-12478. PubMed ID: 38423989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of Metal-Organic Frameworks for Highly Effective Hydrogen Isotope Separation by Quantum Sieving.
    Han G; Gong Y; Huang H; Cao D; Chen X; Liu D; Zhong C
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32128-32132. PubMed ID: 30176717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Properties of 2D Carbon-Graphdiyne.
    Jia Z; Li Y; Zuo Z; Liu H; Huang C; Li Y
    Acc Chem Res; 2017 Oct; 50(10):2470-2478. PubMed ID: 28915007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attachment of Hydrogen Molecules to Atomic Ions (Na
    García-Arroyo E; Campos-Martínez J; Bartolomei M; Hernández MI; Pirani F; Halberstadt N
    Chemphyschem; 2023 Dec; 24(23):e202300424. PubMed ID: 37671621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Sieves for the Separation of Hydrogen Isotopes.
    Perez-Carbajo J; Parra JB; Ania CO; Merkling PJ; Calero S
    ACS Appl Mater Interfaces; 2019 May; 11(20):18833-18840. PubMed ID: 31022344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotopic separation of helium through graphyne membranes: a ring polymer molecular dynamics study.
    Bhowmick S; Hernández MI; Campos-Martínez J; Suleimanov YV
    Phys Chem Chem Phys; 2021 Sep; 23(34):18547-18557. PubMed ID: 34612392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification.
    Wang Y; Li J; Yang Q; Zhong C
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8694-701. PubMed ID: 26964618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Isotope Separation Using a Metal-Organic Cage Built from Macrocycles.
    He D; Zhang L; Liu T; Clowes R; Little MA; Liu M; Hirscher M; Cooper AI
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202202450. PubMed ID: 35687266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites.
    Weinrauch I; Savchenko I; Denysenko D; Souliou SM; Kim HH; Le Tacon M; Daemen LL; Cheng Y; Mavrandonakis A; Ramirez-Cuesta AJ; Volkmer D; Schütz G; Hirscher M; Heine T
    Nat Commun; 2017 Mar; 8():14496. PubMed ID: 28262794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient hydrogen isotopologues separation through a tunable potential barrier: The case of a C
    Qu Y; Li F; Zhao M
    Sci Rep; 2017 May; 7(1):1483. PubMed ID: 28469149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Efficiency of Na- and Ca-Exchanged Chabazites in D
    Bezverkhyy I; Boyer V; Cabaud C; Bellat JP
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52738-52744. PubMed ID: 36379718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation.
    Qu Y; Li F; Zhou H; Zhao M
    Sci Rep; 2016 Jan; 6():19952. PubMed ID: 26813491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Transmission of He Isotopes through Crown Ether-Embedded Graphene Nanomeshes: An Eckart Potential Approach.
    Dhali R; John C; Swathi RS
    J Phys Chem A; 2019 Aug; 123(34):7499-7506. PubMed ID: 31385701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion of H2 and D2 Confined in Single-Walled Carbon Nanotubes: Quantum Dynamics and Confinement Effects.
    Mondelo-Martell M; Huarte-Larrañaga F
    J Phys Chem A; 2016 Aug; 120(33):6501-12. PubMed ID: 27459476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Penetration Barrier of Water through Graphynes' Pores: First-Principles Predictions and Force Field Optimization.
    Bartolomei M; Carmona-Novillo E; Hernández MI; Campos-Martínez J; Pirani F; Giorgi G; Yamashita K
    J Phys Chem Lett; 2014 Feb; 5(4):751-5. PubMed ID: 26270848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.