BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35726719)

  • 21. Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae.
    Lu YJ; Rock CO
    Mol Microbiol; 2006 Jan; 59(2):551-66. PubMed ID: 16390449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A thioesterase bypasses the requirement for exogenous fatty acids in the plsX deletion of Streptococcus pneumoniae.
    Parsons JB; Frank MW; Eleveld MJ; Schalkwijk J; Broussard TC; de Jonge MI; Rock CO
    Mol Microbiol; 2015 Apr; 96(1):28-41. PubMed ID: 25534847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Fatty Acid Regulator FadR Influences the Expression of the Virulence Cascade in the El Tor Biotype of Vibrio cholerae by Modulating the Levels of ToxT via Two Different Mechanisms.
    Kovacikova G; Lin W; Taylor RK; Skorupski K
    J Bacteriol; 2017 Apr; 199(7):. PubMed ID: 28115548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.
    Yao J; Dodson VJ; Frank MW; Rock CO
    J Biol Chem; 2015 Sep; 290(36):22163-73. PubMed ID: 26195634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria.
    Yao J; Bruhn DF; Frank MW; Lee RE; Rock CO
    J Biol Chem; 2016 Jan; 291(1):171-81. PubMed ID: 26567338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis.
    De Lay NR; Cronan JE
    J Biol Chem; 2007 Jul; 282(28):20319-28. PubMed ID: 17522044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens.
    Brinster S; Lamberet G; Staels B; Trieu-Cuot P; Gruss A; Poyart C
    Nature; 2009 Mar; 458(7234):83-6. PubMed ID: 19262672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates.
    DiRusso CC; Nyström T
    Mol Microbiol; 1998 Jan; 27(1):1-8. PubMed ID: 9466250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Vibrio cholerae fatty acid regulatory protein, FadR, represses transcription of plsB, the gene encoding the first enzyme of membrane phospholipid biosynthesis.
    Feng Y; Cronan JE
    Mol Microbiol; 2011 Aug; 81(4):1020-33. PubMed ID: 21771112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and beta-ketoacyl-acyl carrier protein synthases in Escherichia coli.
    Heath RJ; Rock CO
    J Biol Chem; 1995 Jun; 270(26):15531-8. PubMed ID: 7797547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites.
    Falekun S; Sepulveda J; Jami-Alahmadi Y; Park H; Wohlschlegel JA; Sigala PA
    Elife; 2021 Oct; 10():. PubMed ID: 34612205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ACP-independent fatty acid synthesis pathway in archaea: implications for the origin of phospholipids.
    Lombard J; López-García P; Moreira D
    Mol Biol Evol; 2012 Nov; 29(11):3261-5. PubMed ID: 22718911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel role of malonyl-ACP in lipid homeostasis.
    Martinez MA; Zaballa ME; Schaeffer F; Bellinzoni M; Albanesi D; Schujman GE; Vila AJ; Alzari PM; de Mendoza D
    Biochemistry; 2010 Apr; 49(14):3161-7. PubMed ID: 20201588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphatidic acid synthesis in bacteria.
    Yao J; Rock CO
    Biochim Biophys Acta; 2013 Mar; 1831(3):495-502. PubMed ID: 22981714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Branched-chain amino acid metabolism controls membrane phospholipid structure in Staphylococcus aureus.
    Frank MW; Whaley SG; Rock CO
    J Biol Chem; 2021 Nov; 297(5):101255. PubMed ID: 34592315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics.
    Yao J; Rock CO
    J Biol Chem; 2015 Mar; 290(10):5940-6. PubMed ID: 25648887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FadR, transcriptional co-ordination of metabolic expediency.
    Cronan JE; Subrahmanyam S
    Mol Microbiol; 1998 Aug; 29(4):937-43. PubMed ID: 9767562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel Xanthomonas campestris Long-Chain-Specific 3-Oxoacyl-Acyl Carrier Protein Reductase Involved in Diffusible Signal Factor Synthesis.
    Hu Z; Dong H; Ma JC; Yu Y; Li KH; Guo QQ; Zhang C; Zhang WB; Cao X; Cronan JE; Wang H
    mBio; 2018 May; 9(3):. PubMed ID: 29739899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. (p)ppGpp/GTP and Malonyl-CoA Modulate Staphylococcus aureus Adaptation to FASII Antibiotics and Provide a Basis for Synergistic Bi-Therapy.
    Pathania A; Anba-Mondoloni J; Gominet M; Halpern D; Dairou J; Dupont L; Lamberet G; Trieu-Cuot P; Gloux K; Gruss A
    mBio; 2021 Feb; 12(1):. PubMed ID: 33531402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional Repression of the VC2105 Protein by Vibrio FadR Suggests that It Is a New Auxiliary Member of the fad Regulon.
    Gao R; Lin J; Zhang H; Feng Y
    Appl Environ Microbiol; 2016 May; 82(9):2819-2832. PubMed ID: 26944841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.