These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35726899)

  • 1. Impact of Graphene Quantum Dot Edge Morphologies on Their Optical Properties.
    Khan SN; Weight BM; Gifford BJ; Tretiak S; Bishop A
    J Phys Chem Lett; 2022 Jun; 13(25):5801-5807. PubMed ID: 35726899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge Modification and Site-Selective Functionalization of Graphene Quantum Dots: A Versatile Technique for Designing Tunable Optoelectronic and Sensing Devices.
    Basak T; Basak T
    J Phys Chem A; 2023 Jun; 127(25):5335-5343. PubMed ID: 37334570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of graphene's edge energy using hexagonal graphene quantum dots and PM7 method.
    Vorontsov AV; Tretyakov EV
    Phys Chem Chem Phys; 2018 May; 20(21):14740-14752. PubMed ID: 29774909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge carboxylation-induced charge separation dynamics of graphene quantum dot/cellulose nanocomposites.
    Cui P; Xue Y
    Carbohydr Polym; 2023 Jan; 299():120190. PubMed ID: 36876805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the properties of graphene quantum dots by passivation.
    Rani P; Dalal R; Srivastava S; Tankeshwar K
    Phys Chem Chem Phys; 2022 Nov; 24(42):26232-26240. PubMed ID: 36278955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfication-induced non-radiative electron-hole recombination dynamics in graphene quantum dots for tuning photocatalytic performance.
    Cui P; Xue Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122117. PubMed ID: 36403541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping Capabilities of Fluorine on the UV Absorption and Emission Spectra of Pyrene-Based Graphene Quantum Dots.
    Liu B; Aquino AJA; Nachtigallová D; Lischka H
    J Phys Chem A; 2020 Dec; 124(52):10954-10966. PubMed ID: 33325716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms.
    Feng J; Dong H; Pang B; Shao F; Zhang C; Yu L; Dong L
    Phys Chem Chem Phys; 2018 Jun; 20(22):15244-15252. PubMed ID: 29789854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On using non-Kekulé triangular graphene quantum dots for scavenging hazardous sulfur hexafluoride components.
    Roondhe V; Roondhe B; Saxena S; Ahuja R; Shukla A
    Heliyon; 2023 Apr; 9(4):e15388. PubMed ID: 37123910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A time-dependent DFT study of the absorption and fluorescence properties of graphene quantum dots.
    Zhao M; Yang F; Xue Y; Xiao D; Guo Y
    Chemphyschem; 2014 Apr; 15(5):950-7. PubMed ID: 24590822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of graphene nanoflakes: Shape matters.
    Mansilla Wettstein C; Bonafé FP; Oviedo MB; Sánchez CG
    J Chem Phys; 2016 Jun; 144(22):224305. PubMed ID: 27306005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of defects on optical and electronic properties of graphene quantum dots: a density functional theory study.
    Liu W; Han Y; Liu M; Chen L; Xu J
    RSC Adv; 2023 May; 13(24):16232-16240. PubMed ID: 37266493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells.
    Rajender G; Goswami U; Giri PK
    J Colloid Interface Sci; 2019 Apr; 541():387-398. PubMed ID: 30710821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral Graphene Quantum Dots.
    Suzuki N; Wang Y; Elvati P; Qu ZB; Kim K; Jiang S; Baumeister E; Lee J; Yeom B; Bahng JH; Lee J; Violi A; Kotov NA
    ACS Nano; 2016 Feb; 10(2):1744-55. PubMed ID: 26743467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting.
    Yan Y; Zhai D; Liu Y; Gong J; Chen J; Zan P; Zeng Z; Li S; Huang W; Chen P
    ACS Nano; 2020 Jan; 14(1):1185-1195. PubMed ID: 31934740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size and edge dependence of two-photon absorption in rectangular graphene quantum dots.
    Feng X; Qin Y; Liu Y
    Opt Express; 2018 Mar; 26(6):7132-7139. PubMed ID: 29609399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the optoelectronic behaviour of heteroatom doped diamond-shaped graphene quantum dots.
    El Haddad Y; Ouarrad H; Drissi LB
    RSC Adv; 2024 Apr; 14(18):12639-12649. PubMed ID: 38638818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots.
    Niu X; Li Y; Shu H; Wang J
    Nanoscale; 2016 Nov; 8(46):19376-19382. PubMed ID: 27845798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots.
    Saleem Y; Najera Baldo L; Delgado A; Szulakowska L; Hawrylak P
    J Phys Condens Matter; 2019 Jul; 31(30):305503. PubMed ID: 30812024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.