These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35726911)

  • 21. pH-induced reversible wetting transition between the underwater superoleophilicity and superoleophobicity.
    Cheng Z; Lai H; Du Y; Fu K; Hou R; Li C; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):636-41. PubMed ID: 24319986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patterning of controllable surface wettability for printing techniques.
    Tian D; Song Y; Jiang L
    Chem Soc Rev; 2013 Jun; 42(12):5184-209. PubMed ID: 23511610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Green and Rapid Synthesis of Durable and Super-Oil (under Water) and Water (in Air) Repellent Interfaces.
    Rather AM; Manna U
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23451-23457. PubMed ID: 29979031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strategic Formulation of Graphene Oxide Sheets for Flexible Monoliths and Robust Polymeric Coatings Embedded with Durable Bioinspired Wettability †.
    Das A; Deka J; Rather AM; Bhunia BK; Saikia PP; Mandal BB; Raidongia K; Manna U
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42354-42365. PubMed ID: 29119779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How Does Chemistry Influence Liquid Wettability on Liquid-Infused Porous Surface?
    Maji K; Das A; Hirtz M; Manna U
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14531-14541. PubMed ID: 32103660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Underwater superoleophilic to superoleophobic wetting control on the nanostructured copper substrates.
    Cheng Z; Lai H; Du Y; Fu K; Hou R; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11363-70. PubMed ID: 24083992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clam's shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity.
    Liu X; Zhou J; Xue Z; Gao J; Meng J; Wang S; Jiang L
    Adv Mater; 2012 Jul; 24(25):3401-5. PubMed ID: 22648962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drop/bubble transportation and controllable manipulation on patterned slippery lubricant infused surfaces with tunable wettability.
    Li Q; Wu D; Guo Z
    Soft Matter; 2019 Aug; 15(34):6803-6810. PubMed ID: 31410438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wetting-controlled strategies: from theories to bio-inspiration.
    Song C; Zheng Y
    J Colloid Interface Sci; 2014 Aug; 427():2-14. PubMed ID: 24290249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review.
    Genzer J; Efimenko K
    Biofouling; 2006; 22(5-6):339-60. PubMed ID: 17110357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mussel-Inspired Polyglycerol Coatings with Controlled Wettability: From Superhydrophilic to Superhydrophobic Surface Coatings.
    Schlaich C; Wei Q; Haag R
    Langmuir; 2017 Sep; 33(38):9508-9520. PubMed ID: 28605191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioinspired surfaces with wettability for antifouling application.
    Li Z; Guo Z
    Nanoscale; 2019 Dec; 11(47):22636-22663. PubMed ID: 31755511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Covalent crosslinking chemistry for controlled modulation of nanometric roughness and surface free energy.
    Sarkar D; Dhar M; Das A; Mandal S; Phukan A; Manna U
    Chem Sci; 2024 Mar; 15(13):4938-4951. PubMed ID: 38550695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchical Graphene/Metal-Organic Framework Composites with Tailored Wettability for Separation of Immiscible Liquids.
    Mai VC; Das P; Ronn G; Zhou J; Lim TT; Duan H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35563-35571. PubMed ID: 32635718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peanut leaf inspired multifunctional surfaces.
    Yang S; Ju J; Qiu Y; He Y; Wang X; Dou S; Liu K; Jiang L
    Small; 2014 Jan; 10(2):294-9. PubMed ID: 23908145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 'Rewritable' and 'liquid-specific' recognizable wettability pattern.
    Dhar M; Sarkar D; Das A; Rahaman SKA; Ghosh D; Manna U
    Nat Commun; 2024 Jul; 15(1):5838. PubMed ID: 38992010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a Super-Liquid Crystal-Phobic Coating for Immobilizing Liquid Crystal μ-Droplets─Without Affecting Their Sensitivity.
    Borbora A; Manna U
    Langmuir; 2022 Aug; 38(30):9221-9228. PubMed ID: 35767825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversible superhydrophilicity and superhydrophobicity on a lotus-leaf pattern.
    de Leon A; Advincula RC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22666-72. PubMed ID: 25412015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalyst-Free and Rapid Chemical Approach for in Situ Growth of "Chemically Reactive" and Porous Polymeric Coating.
    Das S; Das A; Parbat D; Manna U
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34316-34329. PubMed ID: 31429551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of Dual-Functional and Robust Underwater Superoleophobic Interfaces.
    Baruah U; Das A; Manna U
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28571-28581. PubMed ID: 31298026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.