BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35727034)

  • 1. A Validated Set of Ascorbate Peroxidase-Based Organelle Markers for Electron Microscopy of Saccharomyces cerevisiae.
    Li H; He CW; Zhu J; Xie Z
    mSphere; 2022 Aug; 7(4):e0010722. PubMed ID: 35727034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Validated Set of Fluorescent-Protein-Based Markers for Major Organelles in Yeast (Saccharomyces cerevisiae).
    Zhu J; Zhang ZT; Tang SW; Zhao BS; Li H; Song JZ; Li D; Xie Z
    mBio; 2019 Sep; 10(5):. PubMed ID: 31481383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing Yeast Organelles with Fluorescent Protein Markers.
    Liu CY; Zhu J; Xie Z
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35532278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2.
    Hwang J; Espenshade PJ
    Biochem J; 2016 Aug; 473(16):2463-9. PubMed ID: 27274088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Visualization of APEX2-Tagged Erg11 in Saccharomyces cerevisiae Using Focused Ion Beam Scanning Electron Microscopy.
    Kerstens W; Kremer A; Holtappels M; Borghgraef P; Lippens S; Van Dijck P
    mSphere; 2020 Feb; 5(1):. PubMed ID: 32024705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells.
    Martell JD; Deerinck TJ; Lam SS; Ellisman MH; Ting AY
    Nat Protoc; 2017 Sep; 12(9):1792-1816. PubMed ID: 28796234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed Evolution of Split APEX2 Peroxidase.
    Han Y; Branon TC; Martell JD; Boassa D; Shechner D; Ellisman MH; Ting A
    ACS Chem Biol; 2019 Apr; 14(4):619-635. PubMed ID: 30848125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic Mapping by APEX2-Catalyzed Proximity Labeling in Saccharomyces cerevisiae Semipermeabilized Cells.
    Singer-Krüger B; Jansen RP
    Methods Mol Biol; 2022; 2477():261-274. PubMed ID: 35524122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of APEX2 for electron microscopy and proximity labeling.
    Lam SS; Martell JD; Kamer KJ; Deerinck TJ; Ellisman MH; Mootha VK; Ting AY
    Nat Methods; 2015 Jan; 12(1):51-4. PubMed ID: 25419960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. APEX2-mediated proximity labeling resolves protein networks in Saccharomyces cerevisiae cells.
    Singer-Krüger B; Fröhlich T; Franz-Wachtel M; Nalpas N; Macek B; Jansen RP
    FEBS J; 2020 Jan; 287(2):325-344. PubMed ID: 31323700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy.
    Natter K; Leitner P; Faschinger A; Wolinski H; McCraith S; Fields S; Kohlwein SD
    Mol Cell Proteomics; 2005 May; 4(5):662-72. PubMed ID: 15716577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.).
    Wu TM; Lin KC; Liau WS; Chao YY; Yang LH; Chen SY; Lu CA; Hong CY
    Plant Mol Biol; 2016 Jan; 90(1-2):107-15. PubMed ID: 26519260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Proximity Labeling System to Map the
    Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP
    Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569
    [No Abstract]   [Full Text] [Related]  

  • 14. Localization of Mitochondrial Nucleoids by Transmission Electron Microscopy Using the Transgenic Expression of the Mitochondrial Helicase Twinkle and APEX2.
    Pla-Martín D; Babatz F; Schauss AC
    Methods Mol Biol; 2023; 2615():173-188. PubMed ID: 36807792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa.
    Dangol S; Singh R; Chen Y; Jwa NS
    Mol Cells; 2017 Nov; 40(11):828-836. PubMed ID: 29113428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX.
    Ariotti N; Hall TE; Parton RG
    Methods Cell Biol; 2017; 140():105-121. PubMed ID: 28528629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APEX Fingerprinting Reveals the Subcellular Localization of Proteins of Interest.
    Lee SY; Kang MG; Park JS; Lee G; Ting AY; Rhee HW
    Cell Rep; 2016 May; 15(8):1837-47. PubMed ID: 27184847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy.
    Martell JD; Deerinck TJ; Sancak Y; Poulos TL; Mootha VK; Sosinsky GE; Ellisman MH; Ting AY
    Nat Biotechnol; 2012 Nov; 30(11):1143-8. PubMed ID: 23086203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enhanced ascorbate peroxidase 2/antibody-binding domain fusion protein (APEX2-ABD) as a recombinant target-specific signal amplifier.
    Lee J; Song EK; Bae Y; Min J; Rhee HW; Park TJ; Kim M; Kang S
    Chem Commun (Camb); 2015 Jul; 51(54):10945-8. PubMed ID: 26063640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the Cymbidium ringspot virus 33-kilodalton protein in Saccharomyces cerevisiae and molecular dissection of the peroxisomal targeting signal.
    Navarro B; Rubino L; Russo M
    J Virol; 2004 May; 78(9):4744-52. PubMed ID: 15078956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.