These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35727216)
21. Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. Schröder HC; Boreiko A; Korzhev M; Tahir MN; Tremel W; Eckert C; Ushijima H; Müller IM; Müller WE J Biol Chem; 2006 Apr; 281(17):12001-9. PubMed ID: 16495220 [TBL] [Abstract][Full Text] [Related]
22. Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Schröder HC; Brandt D; Schlossmacher U; Wang X; Tahir MN; Tremel W; Belikov SI; Müller WE Naturwissenschaften; 2007 May; 94(5):339-59. PubMed ID: 17216430 [TBL] [Abstract][Full Text] [Related]
23. Biosilica: Molecular Biology, Biochemistry and Function in Demosponges as well as its Applied Aspects for Tissue Engineering. Wang X; Schröder HC; Wiens M; Schloßmacher U; Müller WE Adv Mar Biol; 2012; 62():231-71. PubMed ID: 22664124 [TBL] [Abstract][Full Text] [Related]
24. Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Pozzolini M; Sturla L; Cerrano C; Bavestrello G; Camardella L; Parodi AM; Raheli F; Benatti U; Müller WE; Giovine M Mar Biotechnol (NY); 2004; 6(6):594-603. PubMed ID: 15747092 [TBL] [Abstract][Full Text] [Related]
25. Facile fabrication of uniform silica films with tunable physical properties using silicatein protein from sponges. Rai A; Perry CC Langmuir; 2010 Mar; 26(6):4152-9. PubMed ID: 20000795 [TBL] [Abstract][Full Text] [Related]
26. Biochemistry and cell biology of silica formation in sponges. Müller WE; Krasko A; Le Pennec G; Schröder HC Microsc Res Tech; 2003 Nov; 62(4):368-77. PubMed ID: 14534909 [TBL] [Abstract][Full Text] [Related]
27. A water-soluble precursor for efficient silica polymerization by silicateins. Povarova NV; Markina NM; Baranov MS; Barinov NA; Klinov DV; Kozhemyako VB; Lukyanov KA Biochem Biophys Res Commun; 2018 Jan; 495(2):2066-2070. PubMed ID: 29253563 [TBL] [Abstract][Full Text] [Related]
28. Formation of silicones mediated by the sponge enzyme silicatein-α. Wolf SE; Schlossmacher U; Pietuch A; Mathiasch B; Schröder HC; Müller WE; Tremel W Dalton Trans; 2010 Oct; 39(39):9245-9. PubMed ID: 20396816 [TBL] [Abstract][Full Text] [Related]
29. Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials. Andre R; Tahir MN; Natalio F; Tremel W FEBS J; 2012 May; 279(10):1737-49. PubMed ID: 22510103 [TBL] [Abstract][Full Text] [Related]
30. Self-healing, an intrinsic property of biomineralization processes. Müller WE; Wang X; Jochum KP; Schröder HC IUBMB Life; 2013 May; 65(5):382-96. PubMed ID: 23509013 [TBL] [Abstract][Full Text] [Related]
31. Silintaphin-1--interaction with silicatein during structure-guiding bio-silica formation. Schlossmacher U; Wiens M; Schröder HC; Wang X; Jochum KP; Müller WE FEBS J; 2011 Apr; 278(7):1145-55. PubMed ID: 21284806 [TBL] [Abstract][Full Text] [Related]
32. Biogenic inorganic polysilicates (biosilica): formation and biomedical applications. Schröder HC; Wang X; Schloßmacher U; Wiens M; Müller WE Prog Mol Subcell Biol; 2013; 54():197-234. PubMed ID: 24420715 [TBL] [Abstract][Full Text] [Related]
33. Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Tahir MN; Théato P; Müller WE; Schröder HC; Janshoff A; Zhang J; Huth J; Tremel W Chem Commun (Camb); 2004 Dec; (24):2848-9. PubMed ID: 15599437 [TBL] [Abstract][Full Text] [Related]
34. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles. Bawazer LA; Izumi M; Kolodin D; Neilson JR; Schwenzer B; Morse DE Proc Natl Acad Sci U S A; 2012 Jun; 109(26):E1705-14. PubMed ID: 22679283 [TBL] [Abstract][Full Text] [Related]
35. Evolution of the main skeleton-forming genes in sponges (phylum Porifera) with special focus on the marine Haplosclerida (class Demospongiae). Aguilar-Camacho JM; Doonan L; McCormack GP Mol Phylogenet Evol; 2019 Feb; 131():245-253. PubMed ID: 30502904 [TBL] [Abstract][Full Text] [Related]
36. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. Belton DJ; Deschaume O; Perry CC FEBS J; 2012 May; 279(10):1710-20. PubMed ID: 22333209 [TBL] [Abstract][Full Text] [Related]
37. Primary structure and post-translational modifications of silicatein beta from the marine sponge Petrosia ficiformis (Poiret, 1789). Armirotti A; Damonte G; Pozzolini M; Mussino F; Cerrano C; Salis A; Benatti U; Giovine M J Proteome Res; 2009 Aug; 8(8):3995-4004. PubMed ID: 19522542 [TBL] [Abstract][Full Text] [Related]
38. Sustainable Exploitation and Conservation of the Endemic Lake Baikal Sponge (Lubomirskia baicalensis) for Application in Nanobiotechnology. Müller WE; Schröder HC; Belikov SI Prog Mol Subcell Biol; 2009; 47():383-416. PubMed ID: 19198787 [TBL] [Abstract][Full Text] [Related]
39. Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. Schröder HC; Natalio F; Shukoor I; Tremel W; Schlossmacher U; Wang X; Müller WE J Struct Biol; 2007 Sep; 159(3):325-34. PubMed ID: 17336092 [TBL] [Abstract][Full Text] [Related]
40. Chemical mimicry: hierarchical 1D TiO2@ZrO2 core-shell structures reminiscent of sponge spicules by the synergistic effect of silicatein-α and silintaphin-1. André R; Tahir MN; Link T; Jochum FD; Kolb U; Theato P; Berger R; Wiens M; Schröder HC; Müller WE; Tremel W Langmuir; 2011 May; 27(9):5464-71. PubMed ID: 21456536 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]