BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35727388)

  • 1. Biosorption of copper ions with olive pomace and walnut shell.
    Sepúlveda P; Pavez O; Tume P; Sepúlveda B
    Environ Geochem Health; 2023 Aug; 45(8):5713-5726. PubMed ID: 35727388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An attractive agro-industrial by-product in environmental cleanup: dye biosorption potential of untreated olive pomace.
    Akar T; Tosun I; Kaynak Z; Ozkara E; Yeni O; Sahin EN; Akar ST
    J Hazard Mater; 2009 Jul; 166(2-3):1217-25. PubMed ID: 19153007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New biosorbent materials for heavy metal removal: product development guided by active site characterization.
    Francesca P; Sara M; Luigi T
    Water Res; 2008 Jun; 42(12):2953-62. PubMed ID: 18423513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity.
    Martín-Lara MA; Pagnanelli F; Mainelli S; Calero M; Toro L
    J Hazard Mater; 2008 Aug; 156(1-3):448-57. PubMed ID: 18242836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid adsorptive removal of chromium from wastewater using walnut-derived biosorbents.
    Garg R; Garg R; Sillanpää M; Alimuddin ; Khan MA; Mubarak NM; Tan YH
    Sci Rep; 2023 Apr; 13(1):6859. PubMed ID: 37100812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive biosorption of Cu
    do Nascimento Júnior WJ; da Silva MGC; Vieira MGA
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23416-23428. PubMed ID: 31197675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid biocomposite of Thamnidium elegans/olive pomace/chitosan for efficient bioremoval of toxic copper.
    Akar T; Uzunel Can ÜG; Celik S; Sayin F; Tunali Akar S
    Int J Biol Macromol; 2022 Nov; 221():865-873. PubMed ID: 36063895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of copper ions from aqueous solution using rape straw powders: Optimization, equilibrium and kinetic studies.
    Liu X; Chen ZQ; Han B; Su CL; Han Q; Chen WZ
    Ecotoxicol Environ Saf; 2018 Apr; 150():251-259. PubMed ID: 29288906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of new magnetic adsorbent of walnut shell ash/starch/Fe
    Foroutan R; Peighambardoust SJ; Mohammadi R; Peighambardoust SH; Ramavandi B
    Chemosphere; 2022 Jun; 296():133978. PubMed ID: 35176297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell.
    Pehlivan E; Altun T
    J Hazard Mater; 2008 Jun; 155(1-2):378-84. PubMed ID: 18179865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products.
    Pellera FM; Giannis A; Kalderis D; Anastasiadou K; Stegmann R; Wang JY; Gidarakos E
    J Environ Manage; 2012 Apr; 96(1):35-42. PubMed ID: 22208396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural fuzzy modelization of copper removal from water by biosorption in fixed-bed columns using olive stone and pinion shell.
    Calero M; Iáñez-Rodríguez I; Pérez A; Martín-Lara MA; Blázquez G
    Bioresour Technol; 2018 Mar; 252():100-109. PubMed ID: 29306712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal.
    Rambabu K; Bharath G; Banat F; Show PL
    Environ Res; 2020 Aug; 187():109694. PubMed ID: 32485359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of protons and heavy metals onto olive pomace: modelling of competition effects.
    Pagnanelli F; Mainelli S; De Angelis S; Toro L
    Water Res; 2005 Apr; 39(8):1639-51. PubMed ID: 15878037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal.
    Gümüş D
    Int J Phytoremediation; 2019; 21(6):556-563. PubMed ID: 30729808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of copper ions from dilute aqueous solutions on base treated rubber (Hevea brasiliensis) leaves powder: kinetics, isotherm, and biosorption mechanisms.
    Wan Ngah WS; Hanafiah MA
    J Environ Sci (China); 2008; 20(10):1168-76. PubMed ID: 19143339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents.
    Mohamed Abdoul-Latif F; Ainane A; Hachi T; Abbi R; Achira M; Abourriche A; Brulé M; Ainane T
    Molecules; 2023 May; 28(11):. PubMed ID: 37298784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of copper(II) and cadmium(II) ions from aqueous solutions by biosorption onto pine cone.
    Değirmen G; Kılıç M; Cepelioğullar O; Pütün AE
    Water Sci Technol; 2012; 66(3):564-72. PubMed ID: 22744687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Removal of Toxic Remazol Brilliant Blue-R Dye from Aqueous Solutions Using
    Parimelazhagan V; Yashwath P; Arukkani Pushparajan D; Carpenter J
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.